gamlss.lrs {gamlss.lasso} | R Documentation |
Support for Function lrs()
Description
This is support for the smoother function lrs() an interface for Brad Efron and Trevor Hastie for lars()
function.
It is not intended to be called directly by users.
Usage
gamlss.lrs(x, y, w, xeval = NULL, ...)
Arguments
x |
the explanatory variables |
y |
iterative y variable |
w |
iterative weights |
xeval |
if xeval=TRUE then predicion is used |
... |
for extra arguments |
Value
No return value, called for GAMLSS lrs procedure.
Author(s)
Florian Ziel, Peru Muniain and Mikis Stasinopoulos
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby R.A., Stasinopoulos D. M., Heller G., and De Bastiani F., (2019) Distributions for Modeling Location, Scale and Shape: Using GAMLSS in R, Chapman and Hall/CRC.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.