summary.gamlssinf0to1 {gamlss.inf} | R Documentation |
Summarizes an inflated GAMLSS fitted model
Description
These are specific methods for the generic function summary
which summarize objects retuned by gamlssinf0to1
or gamlssZadj
.
Usage
## S3 method for class 'gamlssinf0to1'
summary(object, type = c("vcov", "qr"),
robust=FALSE, save = FALSE, hessian.fun = c("R", "PB"),
digits = max(3, getOption("digits") - 3),...)
## S3 method for class 'gamlssZadj'
summary(object, type = c("vcov", "qr"),
robust=FALSE, save = FALSE, hessian.fun = c("R", "PB"),
digits = max(3, getOption("digits") - 3),...)
Arguments
object |
a gamlssinf0to1 or gamlssZadj fitted model |
type |
the default value |
robust |
whether robust (sandwich) standard errors are required |
save |
whether to save the environment of the function so to have access to its values |
hessian.fun |
whether when calculate the Hessian should use the "R" function |
digits |
the number of digits in the output |
... |
for extra arguments |
Details
Using the default value type="vcov"
, the vcov()
method is used to get
the variance covariance matrix (and consequently the standard errors) of the beta parameters.
The variance covariance matrix is calculated using the inverse of the numerical second derivatives
of the observed information matrix. This is a more reliable method since it take into the account the
inter-correlation between the all the parameters. The type="qr"
assumes that the parameters are fixed
at the estimated values. Note that both methods are not appropriate and should be used with caution if smoothing
terms are used in the fitting.
Value
Print summary of a gamlssinf0to1 or a gamlssZadj object
Author(s)
Abu Hossain, Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby and Marco Enea
References
Houssain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. Accepted for publication on Statistics in Medicine.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
Examples
# The gamlssZadj example
set.seed(3210)
x <- (runif(1000)*4)-2
data(sda)
fmu <- splinefun(sda$x, sda$mu)
fsigma <- splinefun(sda$x, sda$sigma)
fnu <- function(x)
{f <- splinefun(sda$x, sda$nu)
f(x)/6
}
y0 <- rZAGA(1000, mu=fmu(x), sigma=fsigma(x), nu=fnu(x))
da <- data.frame(y0,x)
t0p <- gamlssZadj(y=y0, mu.fo=~pb(x), sigma.fo=~pb(x),data=da,
trace=TRUE, xi0.fo=~pb(x), family="GA")
summary(t0p)