gamlssZadj {gamlss.inf} | R Documentation |
Fitting positive real line response variable with zeros.
Description
Function gamlssZadj()
allows to fit zero adjusted gamlss models when the response variable distribution is defined on the positive real line.
The gamlssZadj
model for adjusted positive variables is a gamlss
model provides one extra parameters for the mass point at zero. This is equivalent to fit two separate models, a gamlss model for the (0,Inf) part, and a logit model for zero part versus the non-zero part. The function works similarly but provides one fitted object.
Usage
gamlssZadj(y = NULL, mu.formula = ~1, sigma.formula = ~1,
nu.formula = ~1, tau.formula = ~1,
xi0.formula = ~1, data = NULL,
family = GA,
weights = rep(1, length(Y_)), trace = FALSE, ...)
Arguments
y |
the response variable |
mu.formula |
a model formula for |
sigma.formula |
a model formula for |
nu.formula |
a model formula for |
tau.formula |
a model formula for |
xi0.formula |
a model formula for |
data |
a data frame containing the variables occurring in the formula. |
family |
any |
weights |
a vector of weights as in gamlss |
trace |
logical, if TRUE information on model estimation will be printed during the fitting |
... |
for extra arguments to pass to |
Details
The default family is a gamma distribution (GA), but other distributions on the positive rael line can be used, e.g. those generated from existing continuous gamlss.family
distributions using say gen.Family()
with "log"
or gen.trun()
from package gamlss.tr
Value
.
Returns a gamlssZadj
object which has its own methods
Author(s)
Mikis Stasinopoulos, Robert Rigby and Marco Enea
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. https://www.crcpress.com/Flexible-Regression-and-Smoothing-Using-GAMLSS-in-R/Stasinopoulos-Rigby-Heller-Voudouris-Bastiani/p/book/9781138197909.
See Also
Examples
y0 <- rZAGA(1000, mu=.3, sigma=.4, nu=.15)# p0=0.13
g0 <- gamlss(y0~1, family=ZAGA)
t0 <- gamlssZadj(y=y0, mu.formula=~1, family=GA, trace=TRUE)
AIC(g0,t0, k=0)