centile_bucket {gamlss.ggplots} | R Documentation |
Centile bucket plot
Description
A bucket plot is a graphical way to check the skewness and kurtosis of a continuous variable or the residuals of a fitted GAMLSS model. It plots the centile skewness (tail or central) and transformed centile kurtosis of the variable (or residuals) together with a cloud of points obtained using a non-parametric bootstrap from the original variable (or residuals). It also provides a graphical way of performing a Monte Carlo simulation test on whether the centile skewness and transformed centile kurtosis of the variable of interest are simultaneously equal to zero.
There are two function here:
i) cenlile_bucket()
for a single bucket plot. Note that model_cent_bucket()
and centile_bucket()
are synonymous.
ii) centile_bucket_wrap()
for multiple bucket plots cut according to terms in the model.
Usage
centile_bucket(x, ..., type = c("tail", "central"), weights = NULL,
no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj,
palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL,
cex_text = 5, col_text = "black", colour_bucket = FALSE,
line_width = 0.5, sim_test = FALSE, no_sim_test = 1000,
col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234)
model_cent_bucket(x, ..., type = c("tail", "central"), weights = NULL,
no_bootstrap = 99, col_bootstrap = hcl.colors(length.obj,
palette = "Set 2"), alpha_bootstrap = 1, text_to_show = NULL,
cex_text = 5, col_text = "black", colour_bucket = FALSE,
line_width = 0.5, sim_test = FALSE, no_sim_test = 1000,
col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234)
centile_bucket_wrap(x, ..., type = c("tail", "central"), weights = NULL,
xvar = NULL, n_inter = 4, no_bootstrap = 99,
col_bootstrap = hcl.colors(length.obj, palette = "Set 2"),
alpha_bootstrap = 1, text_to_show = NULL, check_overlap_text = FALSE,
cex_text = 5, col_text = "black", colour_bucket = FALSE,
line_width = 0.5, sim_test = FALSE, no_sim_test = 1000,
col_sim_test = gray(0.7), alpha_sim_test = 0.1, seed_test = 1234)
Arguments
x |
x should be a continuous vector of a GAMLSS fitted model. |
... |
for more that one continuous vectors or fitted models |
type |
whether "tail" of "central" skewness and kurtosis |
weights |
if priors weights are needed |
no_bootstrap |
the number of bootstrap samples for the cloud around the point of skewness and kurtosis. |
col_bootstrap |
The colour of the bootstrap samples |
alpha_bootstrap |
The transparency parameter of the bootstrap samples. |
text_to_show |
what text to show in the plots, default the names of vectors or models |
cex_text |
the character size of the text |
col_text |
the colour of the text |
colour_bucket |
whether colour or gray lines in the bucket |
line_width |
the line width |
sim_test |
whether to Monde Carlo simulation is needed to check the null hypothesis that there is no centile skewness and transformed centile kurtosis in the sample. |
no_sim_test |
The number of simulation for the test |
col_sim_test |
the colour used for displaying the Monde Carlo test values |
alpha_sim_test |
The transparency parameter of the Monde Carlo samples. |
seed_test |
A seed value for the Monde Carlo simulation. |
xvar |
the x term |
n_inter |
how many intervals needed |
check_overlap_text |
whether to check overlapping text |
Details
More details about centile bucket plots is given in De Bastiani et al. (2022)
Value
A plot displaying the centile skewness and transformed centile kurtosis of the sample or residual of a model.
Note
The bucket plot provides an additional residual diagnostic tool that can be used for fitted model checking, alongside other diagnostic tools, for example worm plots, and Q (and Z) statistics.
Author(s)
Mikis Stasinopoulos, Bob Rigby and Fernanda De Bastiani
References
De Bastiani, F., Stasinopoulos, D. M., Rigby, R. A., Heller, G. Z., and Lucas A. (2022) Bucket Plot: A Visual Tool for Skewness and Kurtosis Comparisons. To be published.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547 An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M. D., Rigby, R. A., and De Bastiani F., (2018) GAMLSS: a distributional regression approach, Statistical Modelling, Vol. 18, pp, 248-273, SAGE Publications Sage India: New Delhi, India.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
See Also
Examples
m1 <- gamlss(R~pb(Fl)+pb(A), data=rent, family=GA)
centile_bucket(m1)
centile_bucket_wrap(m1, xvar=rent$A)