gamlss.foreach-package {gamlss.foreach} | R Documentation |
Computational Intensive Functions within GAMLSS
Description
This package is intended for functions needed parallel computations provided by the package foreach.
At the moment the following functions exist:
centiles.boot()
, which is designed get bootstrap confidence intervals for centile curves
fitRolling()
, rolling regression which is common in time series analysis when one step ahead forecasts is required.
fitPCR()
, for univariate principal component regression. I
Details
The DESCRIPTION file:
Package: | gamlss.foreach |
Type: | Package |
Title: | Parallel Computations for Distributional Regression |
Version: | 1.1-6 |
Date: | 2022-08-28 |
Author: | Mikis Stasinopoulos [aut, cre, cph], Bob Rigby [aut], Fernanda De Bastiani [aut] |
Description: | Computational intensive calculations for Generalized Additive Models for Location Scale and Shape, <doi:10.1111/j.1467-9876.2005.00510.x>. |
Maintainer: | Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk> |
LazyLoad: | yes |
Depends: | R (>= 2.2.1), gamlss, foreach, doParallel, methods |
Imports: | gamlss.data, gamlss.dist, glmnet |
License: | GPL-2 | GPL-3 |
URL: | https://www.gamlss.com/ |
NeedsCompilation: | no |
Packaged: | 2021-03-04 15:27:15 UTC; dimitriosstasinopoulos |
Index of help topics:
BayesianBoot Non parametric and Bayesian Bootstrapping for GAMLSS models centiles.boot Bootstrapping centiles curves estimated using GAMLSS fitPCR Function to fit simple Principal Component Regression. fitRolling Function to Fit Rolling Regression in gamlss fitted.PCR Methods for PCR objects gamlss.foreach-package Computational Intensive Functions within GAMLSS pc Functions to Fit Principal Component Regression in GAMLSS which.Data.Corr Detecting Hight Pair-Wise Correlations in Data
Author(s)
Mikis Stasinopoulos, d.stasinopoulos@londonmet.ac.uk,and Bob Rigby r.rigby@londonmet.ac.uk
Maintainer: Mikis Stasinopoulos, d.stasinopoulos@londonmet.ac.uk
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
library(gamlss.foreach)
# fixed degrees of freedom
cl <- makePSOCKcluster(2)
registerDoParallel(2)
data(db)
nage <- with(db, age^0.33)
ndb <- data.frame(db, nage)
m1 <- gamlss(head~cs(nage, 12), sigma.fo=~cs(nage,4), nu.fo=~nage,
tau.fo=~nage, family=BCT, data=ndb)
test1 <- centiles.boot(m1, xname="nage", xvalues=seq(0.01,20,0.2),B=10, power=0.33)
test1
plot(test1)
# degrees of freedom varying
m2 <- gamlss(head~pb(nage), sigma.fo=~pb(nage), nu.fo=~pb(nage),
tau.fo=~pb(nage), family=BCT, data=ndb)
test2 <- centiles.boot(m2, xname="nage", xvalues=seq(0.01,20,0.2),B=10, power=0.33)
stopImplicitCluster()
test2
plot(test2)