BayesianBoot {gamlss.foreach} | R Documentation |
Non parametric and Bayesian Bootstrapping for GAMLSS models
Description
The function takes a GAMLSS fitted model and bootstrap it to create B
bootstrap samples.
Usage
NonParametricBoot(obj, data = NULL, B = 100, newdata = NULL)
BayesianBoot(obj, data = NULL, B = 100, newdata = NULL)
Arguments
obj |
a |
data |
a data frame |
B |
the number of boostrap samples |
newdata |
new data for |
Details
The function NonParametric()
perform non-parametric bootstraping, Efron and Tibshirani (1993) while the function BayesianBoot()
perform Bayesian bootstrap
Rubin (1981)
Value
An Bayesian.boot
object with elements
boot |
the bootstrap samples |
B |
the required number of boostraps |
trueB |
the actual number of boostraps |
par |
the distribution parameters |
orig.coef |
the fitted coeficients from the GAMLSS model |
orig.call |
the call from the GAMLSS model |
Author(s)
Mikis Stasinopoulos, d.stasinopoulos@londonmet.ac.uk
References
Efron, B. and Tibshirani, R, (1993), An introduction to the bootstrap, Chapman and Hall New York, Monographs on statistics and applied probability, vulume 57.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Rubin, D. B. (1981) the bayesian bootstrap. The annals of statistics, pp. 130-134.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stasinopoulos, M. D., Rigby, R. A., and De Bastiani F., (2018) GAMLSS: a distributional regression approach, Statistical Modelling, Vol. 18, pp, 248-273, SAGE Publications Sage India: New Delhi, India. doi:10.1177/1471082X18759144
(see also https://www.gamlss.com/).
See Also
Examples
m1 <-gamlss(y~x+qrt, data=aids, family=NBI())
registerDoParallel(cores = 2)
B1 <- BayesianBoot(m1)
summary(B1)
plot(B1)
B2 <- NonParametricBoot(m1)
stopImplicitCluster()
summary(B2)
plot(B2)