| gamlss.dist-package {gamlss.dist} | R Documentation |
Distributions for Generalized Additive Models for Location Scale and Shape
Description
A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively.
Details
The DESCRIPTION file:
| Package: | gamlss.dist |
| Title: | Distributions for Generalized Additive Models for Location Scale and Shape |
| Version: | 6.1-1 |
| Date: | 2023-08-01 |
| Authors@R: | c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "d.stasinopoulos@gre.ac.uk", comment = c(ORCID = "0000-0003-2407-5704")), person("Robert", "Rigby", role = "aut", email = "r.rigby@gre.ac.uk", comment = c(ORCID = "0000-0003-3853-1707")), person("Calliope", "Akantziliotou", role = "ctb"), person("Vlasios", "Voudouris", role = "ctb"), person("Gillian", "Heller", role = "ctb", comment = c(ORCID = "0000-0003-1270-1499")), person("Fernanda", "De Bastiani", role = "ctb", comment = c(ORCID = "0000-0001-8532-639X")), person("Raydonal", "Ospina", role = "ctb", email= "rospina@ime.usp.br", comment = c(ORCID = "0000-0002-9884-9090")), person("Nicoletta", "Motpan", role = "ctb"), person("Fiona", "McElduff", role = "ctb"), person("Majid", "Djennad", role = "ctb"), person("Marco", "Enea", role = "ctb"), person("Alexios", "Ghalanos", role = "ctb"), person("Christos", "Argyropoulos", role = "ctb"), person("Almond", "Stöcker", role = "ctb", comment = c(ORCID = "0000-0001-9160-2397")), person("Jens", "Lichter", role = "ctb"), person("Stanislaus", "Stadlmann", role = "ctb", comment = c(ORCID = "0000-0001-6542-6342")), person("Achim", "Zeileis", role = "ctb", email = "Achim.Zeileis@R-project.org", comment = c(ORCID = "0000-0003-0918-3766")) ) |
| Description: | A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively. |
| License: | GPL-2 | GPL-3 |
| URL: | https://www.gamlss.com/ |
| BugReports: | https://github.com/mstasinopoulos/GAMLSS-Distibutions/issues |
| Depends: | R (>= 3.5.0) |
| Imports: | MASS, graphics, stats, methods, grDevices |
| Suggests: | distributions3 (>= 0.2.1) |
| Encoding: | UTF-8 |
| Author: | Mikis Stasinopoulos [aut, cre, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-0003-3853-1707>), Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb] (<https://orcid.org/0000-0003-1270-1499>), Fernanda De Bastiani [ctb] (<https://orcid.org/0000-0001-8532-639X>), Raydonal Ospina [ctb] (<https://orcid.org/0000-0002-9884-9090>), Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stöcker [ctb] (<https://orcid.org/0000-0001-9160-2397>), Jens Lichter [ctb], Stanislaus Stadlmann [ctb] (<https://orcid.org/0000-0001-6542-6342>), Achim Zeileis [ctb] (<https://orcid.org/0000-0003-0918-3766>) |
| Maintainer: | Mikis Stasinopoulos <d.stasinopoulos@gre.ac.uk> |
Index of help topics:
BB Beta Binomial Distribution For Fitting a GAMLSS
Model
BCCG Box-Cox Cole and Green distribution (or Box-Cox
normal) for fitting a GAMLSS
BCPE Box-Cox Power Exponential distribution for
fitting a GAMLSS
BCT Box-Cox t distribution for fitting a GAMLSS
BE The beta distribution for fitting a GAMLSS
BEINF The beta inflated distribution for fitting a
GAMLSS
BEOI The one-inflated beta distribution for fitting
a GAMLSS
BEZI The zero-inflated beta distribution for fitting
a GAMLSS
BI Binomial distribution for fitting a GAMLSS
BNB Beta Negative Binomial distribution for fitting
a GAMLSS
DBI The Double binomial distribution
DBURR12 The Discrete Burr type XII distribution for
fitting a GAMLSS model
DEL The Delaporte distribution for fitting a GAMLSS
model
DPO The Double Poisson distribution
EGB2 The exponential generalized Beta type 2
distribution for fitting a GAMLSS
EXP Exponential distribution for fitting a GAMLSS
GA Gamma distribution for fitting a GAMLSS
GAF The Gamma distribution family
GAMLSS Create a GAMLSS Distribution
GB1 The generalized Beta type 1 distribution for
fitting a GAMLSS
GB2 The generalized Beta type 2 and generalized
Pareto distributions for fitting a GAMLSS
GEOM Geometric distribution for fitting a GAMLSS
model
GG Generalized Gamma distribution for fitting a
GAMLSS
GIG Generalized Inverse Gaussian distribution for
fitting a GAMLSS
GPO The generalised Poisson distribution
GT The generalized t distribution for fitting a
GAMLSS
GU The Gumbel distribution for fitting a GAMLSS
IG Inverse Gaussian distribution for fitting a
GAMLSS
IGAMMA Inverse Gamma distribution for fitting a GAMLSS
JSU The Johnson's Su distribution for fitting a
GAMLSS
JSUo The original Johnson's Su distribution for
fitting a GAMLSS
LG Logarithmic and zero adjusted logarithmic
distributions for fitting a GAMLSS model
LNO Log Normal distribution for fitting in GAMLSS
LO Logistic distribution for fitting a GAMLSS
LOGITNO Logit Normal distribution for fitting in GAMLSS
LQNO Normal distribution with a specific mean and
variance relationship for fitting a GAMLSS
model
MN3 Multinomial distribution in GAMLSS
NBF Negative Binomial Family distribution for
fitting a GAMLSS
NBI Negative Binomial type I distribution for
fitting a GAMLSS
NBII Negative Binomial type II distribution for
fitting a GAMLSS
NET Normal Exponential t distribution (NET) for
fitting a GAMLSS
NO Normal distribution for fitting a GAMLSS
NO2 Normal distribution (with variance as sigma
parameter) for fitting a GAMLSS
NOF Normal distribution family for fitting a GAMLSS
PARETO2 Pareto distributions for fitting in GAMLSS
PE Power Exponential distribution for fitting a
GAMLSS
PIG The Poisson-inverse Gaussian distribution for
fitting a GAMLSS model
PO Poisson distribution for fitting a GAMLSS model
RG The Reverse Gumbel distribution for fitting a
GAMLSS
RGE Reverse generalized extreme family distribution
for fitting a GAMLSS
SEP The Skew Power exponential (SEP) distribution
for fitting a GAMLSS
SEP1 The Skew exponential power type 1-4
distribution for fitting a GAMLSS
SHASH The Sinh-Arcsinh (SHASH) distribution for
fitting a GAMLSS
SI The Sichel dustribution for fitting a GAMLSS
model
SICHEL The Sichel distribution for fitting a GAMLSS
model
SIMPLEX The simplex distribution for fitting a GAMLSS
SN1 Skew Normal Type 1 distribution for fitting a
GAMLSS
SN2 Skew Normal Type 2 distribution for fitting a
GAMLSS
ST1 The skew t distributions, type 1 to 5
TF t family distribution for fitting a GAMLSS
WARING Waring distribution for fitting a GAMLSS model
WEI Weibull distribution for fitting a GAMLSS
WEI2 A specific parameterization of the Weibull
distribution for fitting a GAMLSS
WEI3 A specific parameterization of the Weibull
distribution for fitting a GAMLSS
YULE Yule distribution for fitting a GAMLSS model
ZABB Zero inflated and zero adjusted Binomial
distribution for fitting in GAMLSS
ZABI Zero inflated and zero adjusted Binomial
distribution for fitting in GAMLSS
ZAGA The zero adjusted Gamma distribution for
fitting a GAMLSS model
ZAIG The zero adjusted Inverse Gaussian distribution
for fitting a GAMLSS model
ZANBI Zero inflated and zero adjusted negative
binomial distributions for fitting a GAMLSS
model
ZAP Zero adjusted poisson distribution for fitting
a GAMLSS model
ZIP Zero inflated poisson distribution for fitting
a GAMLSS model
ZIP2 Zero inflated poisson distribution for fitting
a GAMLSS model
ZIPF The zipf and zero adjusted zipf distributions
for fitting a GAMLSS model
checklink Set the Right Link Function for Specified
Parameter and Distribution
count_1_31 A set of functions to plot gamlss.family
distributions
exGAUS The ex-Gaussian distribution
flexDist Non-parametric pdf from limited information
data
gamlss.dist-package Distributions for Generalized Additive Models
for Location Scale and Shape
gamlss.family Family Objects for fitting a GAMLSS model
gen.Family Functions to generate log and logit
distributions from existing continuous
gamlss.family distributions
hazardFun Hazard functions for gamlss.family
distributions
make.link.gamlss Create a Link for GAMLSS families
momentSK Sample and theoretical Moment and Centile
Skewness and Kurtosis Functions
Author(s)
NA
Maintainer: NA
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
# pdf plot
plot(function(y) dSICHEL(y, mu=10, sigma = 0.1 , nu=1 ),
from=0, to=30, n=30+1, type="h")
# cdf plot
PPP <- par(mfrow=c(2,1))
plot(function(y) pSICHEL(y, mu=10, sigma =0.1, nu=1 ),
from=0, to=30, n=30+1, type="h") # cdf
cdf<-pSICHEL(0:30, mu=10, sigma=0.1, nu=1)
sfun1 <- stepfun(1:30, cdf, f = 0)
plot(sfun1, xlim=c(0,30), main="cdf(x)")
par(PPP)