gamlss.dist-package {gamlss.dist} | R Documentation |
Distributions for Generalized Additive Models for Location Scale and Shape
Description
A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively.
Details
The DESCRIPTION file:
Package: | gamlss.dist |
Title: | Distributions for Generalized Additive Models for Location Scale and Shape |
Version: | 6.1-1 |
Date: | 2023-08-01 |
Authors@R: | c(person("Mikis", "Stasinopoulos", role = c("aut", "cre", "cph"), email = "d.stasinopoulos@gre.ac.uk", comment = c(ORCID = "0000-0003-2407-5704")), person("Robert", "Rigby", role = "aut", email = "r.rigby@gre.ac.uk", comment = c(ORCID = "0000-0003-3853-1707")), person("Calliope", "Akantziliotou", role = "ctb"), person("Vlasios", "Voudouris", role = "ctb"), person("Gillian", "Heller", role = "ctb", comment = c(ORCID = "0000-0003-1270-1499")), person("Fernanda", "De Bastiani", role = "ctb", comment = c(ORCID = "0000-0001-8532-639X")), person("Raydonal", "Ospina", role = "ctb", email= "rospina@ime.usp.br", comment = c(ORCID = "0000-0002-9884-9090")), person("Nicoletta", "Motpan", role = "ctb"), person("Fiona", "McElduff", role = "ctb"), person("Majid", "Djennad", role = "ctb"), person("Marco", "Enea", role = "ctb"), person("Alexios", "Ghalanos", role = "ctb"), person("Christos", "Argyropoulos", role = "ctb"), person("Almond", "Stöcker", role = "ctb", comment = c(ORCID = "0000-0001-9160-2397")), person("Jens", "Lichter", role = "ctb"), person("Stanislaus", "Stadlmann", role = "ctb", comment = c(ORCID = "0000-0001-6542-6342")), person("Achim", "Zeileis", role = "ctb", email = "Achim.Zeileis@R-project.org", comment = c(ORCID = "0000-0003-0918-3766")) ) |
Description: | A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively. |
License: | GPL-2 | GPL-3 |
URL: | https://www.gamlss.com/ |
BugReports: | https://github.com/mstasinopoulos/GAMLSS-Distibutions/issues |
Depends: | R (>= 3.5.0) |
Imports: | MASS, graphics, stats, methods, grDevices |
Suggests: | distributions3 (>= 0.2.1) |
Encoding: | UTF-8 |
Author: | Mikis Stasinopoulos [aut, cre, cph] (<https://orcid.org/0000-0003-2407-5704>), Robert Rigby [aut] (<https://orcid.org/0000-0003-3853-1707>), Calliope Akantziliotou [ctb], Vlasios Voudouris [ctb], Gillian Heller [ctb] (<https://orcid.org/0000-0003-1270-1499>), Fernanda De Bastiani [ctb] (<https://orcid.org/0000-0001-8532-639X>), Raydonal Ospina [ctb] (<https://orcid.org/0000-0002-9884-9090>), Nicoletta Motpan [ctb], Fiona McElduff [ctb], Majid Djennad [ctb], Marco Enea [ctb], Alexios Ghalanos [ctb], Christos Argyropoulos [ctb], Almond Stöcker [ctb] (<https://orcid.org/0000-0001-9160-2397>), Jens Lichter [ctb], Stanislaus Stadlmann [ctb] (<https://orcid.org/0000-0001-6542-6342>), Achim Zeileis [ctb] (<https://orcid.org/0000-0003-0918-3766>) |
Maintainer: | Mikis Stasinopoulos <d.stasinopoulos@gre.ac.uk> |
Index of help topics:
BB Beta Binomial Distribution For Fitting a GAMLSS Model BCCG Box-Cox Cole and Green distribution (or Box-Cox normal) for fitting a GAMLSS BCPE Box-Cox Power Exponential distribution for fitting a GAMLSS BCT Box-Cox t distribution for fitting a GAMLSS BE The beta distribution for fitting a GAMLSS BEINF The beta inflated distribution for fitting a GAMLSS BEOI The one-inflated beta distribution for fitting a GAMLSS BEZI The zero-inflated beta distribution for fitting a GAMLSS BI Binomial distribution for fitting a GAMLSS BNB Beta Negative Binomial distribution for fitting a GAMLSS DBI The Double binomial distribution DBURR12 The Discrete Burr type XII distribution for fitting a GAMLSS model DEL The Delaporte distribution for fitting a GAMLSS model DPO The Double Poisson distribution EGB2 The exponential generalized Beta type 2 distribution for fitting a GAMLSS EXP Exponential distribution for fitting a GAMLSS GA Gamma distribution for fitting a GAMLSS GAF The Gamma distribution family GAMLSS Create a GAMLSS Distribution GB1 The generalized Beta type 1 distribution for fitting a GAMLSS GB2 The generalized Beta type 2 and generalized Pareto distributions for fitting a GAMLSS GEOM Geometric distribution for fitting a GAMLSS model GG Generalized Gamma distribution for fitting a GAMLSS GIG Generalized Inverse Gaussian distribution for fitting a GAMLSS GPO The generalised Poisson distribution GT The generalized t distribution for fitting a GAMLSS GU The Gumbel distribution for fitting a GAMLSS IG Inverse Gaussian distribution for fitting a GAMLSS IGAMMA Inverse Gamma distribution for fitting a GAMLSS JSU The Johnson's Su distribution for fitting a GAMLSS JSUo The original Johnson's Su distribution for fitting a GAMLSS LG Logarithmic and zero adjusted logarithmic distributions for fitting a GAMLSS model LNO Log Normal distribution for fitting in GAMLSS LO Logistic distribution for fitting a GAMLSS LOGITNO Logit Normal distribution for fitting in GAMLSS LQNO Normal distribution with a specific mean and variance relationship for fitting a GAMLSS model MN3 Multinomial distribution in GAMLSS NBF Negative Binomial Family distribution for fitting a GAMLSS NBI Negative Binomial type I distribution for fitting a GAMLSS NBII Negative Binomial type II distribution for fitting a GAMLSS NET Normal Exponential t distribution (NET) for fitting a GAMLSS NO Normal distribution for fitting a GAMLSS NO2 Normal distribution (with variance as sigma parameter) for fitting a GAMLSS NOF Normal distribution family for fitting a GAMLSS PARETO2 Pareto distributions for fitting in GAMLSS PE Power Exponential distribution for fitting a GAMLSS PIG The Poisson-inverse Gaussian distribution for fitting a GAMLSS model PO Poisson distribution for fitting a GAMLSS model RG The Reverse Gumbel distribution for fitting a GAMLSS RGE Reverse generalized extreme family distribution for fitting a GAMLSS SEP The Skew Power exponential (SEP) distribution for fitting a GAMLSS SEP1 The Skew exponential power type 1-4 distribution for fitting a GAMLSS SHASH The Sinh-Arcsinh (SHASH) distribution for fitting a GAMLSS SI The Sichel dustribution for fitting a GAMLSS model SICHEL The Sichel distribution for fitting a GAMLSS model SIMPLEX The simplex distribution for fitting a GAMLSS SN1 Skew Normal Type 1 distribution for fitting a GAMLSS SN2 Skew Normal Type 2 distribution for fitting a GAMLSS ST1 The skew t distributions, type 1 to 5 TF t family distribution for fitting a GAMLSS WARING Waring distribution for fitting a GAMLSS model WEI Weibull distribution for fitting a GAMLSS WEI2 A specific parameterization of the Weibull distribution for fitting a GAMLSS WEI3 A specific parameterization of the Weibull distribution for fitting a GAMLSS YULE Yule distribution for fitting a GAMLSS model ZABB Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS ZABI Zero inflated and zero adjusted Binomial distribution for fitting in GAMLSS ZAGA The zero adjusted Gamma distribution for fitting a GAMLSS model ZAIG The zero adjusted Inverse Gaussian distribution for fitting a GAMLSS model ZANBI Zero inflated and zero adjusted negative binomial distributions for fitting a GAMLSS model ZAP Zero adjusted poisson distribution for fitting a GAMLSS model ZIP Zero inflated poisson distribution for fitting a GAMLSS model ZIP2 Zero inflated poisson distribution for fitting a GAMLSS model ZIPF The zipf and zero adjusted zipf distributions for fitting a GAMLSS model checklink Set the Right Link Function for Specified Parameter and Distribution count_1_31 A set of functions to plot gamlss.family distributions exGAUS The ex-Gaussian distribution flexDist Non-parametric pdf from limited information data gamlss.dist-package Distributions for Generalized Additive Models for Location Scale and Shape gamlss.family Family Objects for fitting a GAMLSS model gen.Family Functions to generate log and logit distributions from existing continuous gamlss.family distributions hazardFun Hazard functions for gamlss.family distributions make.link.gamlss Create a Link for GAMLSS families momentSK Sample and theoretical Moment and Centile Skewness and Kurtosis Functions
Author(s)
NA
Maintainer: NA
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
# pdf plot
plot(function(y) dSICHEL(y, mu=10, sigma = 0.1 , nu=1 ),
from=0, to=30, n=30+1, type="h")
# cdf plot
PPP <- par(mfrow=c(2,1))
plot(function(y) pSICHEL(y, mu=10, sigma =0.1, nu=1 ),
from=0, to=30, n=30+1, type="h") # cdf
cdf<-pSICHEL(0:30, mu=10, sigma=0.1, nu=1)
sfun1 <- stepfun(1:30, cdf, f = 0)
plot(sfun1, xlim=c(0,30), main="cdf(x)")
par(PPP)