count_1_31 {gamlss.dist} | R Documentation |
A set of functions to plot gamlss.family distributions
Description
Those functions are used in the distribution book of gamlss, see Rigby et. al 2019.
Usage
binom_1_31(family = BI, mu = c(0.1, 0.5, 0.7), bd = NULL, miny = 0,
maxy = 20, cex.axis = 1.2, cex.all = 1.5)
binom_2_33(family = BB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2),
bd = NULL, miny = 0, maxy = 10, cex.axis = 1.5,
cex.all = 1.5)
binom_3_33(family = ZIBB, mu = c(0.1, 0.5, 0.8), sigma = c(0.5, 1, 2),
nu = c(0.01, 0.3), bd = NULL, miny = 0, maxy = 10,
cex.axis = 1.5, cex.all = 1.5, cols = c("darkgray", "black"),
spacing = 0.3, legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))
contR_2_12(family = "NO", mu = c(0, -1, 1), sigma = c(1, 0.5, 2),
cols=c(gray(.1),gray(.2),gray(.3)),
ltype = c(1, 2, 3), maxy = 7,
no.points = 201, y.axis.lim = 1.1,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topleft" )
contR_3_11(family = "PE", mu = 0, sigma = 1, nu = c(1, 2, 3),
cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7, no.points = 201,
ltype = c(1, 2, 3), y.axis.lim = 1.1, cex.axis = 1.5,
cex.all = 1.5, legend.cex=1, legend.x="topleft")
contR_4_13(family = "SEP3", mu = 0, sigma = 1, nu = c(0.5, 1, 2),
tau = c(1, 2, 5), cols=c(gray(.1),gray(.2),gray(.3)), maxy = 7,
no.points = 201, ltype = c(1, 2, 3),
y.axis.lim = 1.1, cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topleft",
legend.where=c("left","right"))
contRplus_2_11(family = GA, mu = 1, sigma = c(0.1, 0.6, 1),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 4, no.points = 201,
y.axis.lim = 1.1, ltype = c(1, 2, 3),
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright")
contRplus_3_13(family = "BCCG", mu = 1, sigma = c(0.15, 0.2, 0.5),
nu = c(-2, 0, 4),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 4, ltype = c(1, 2, 3),
no.points = 201, y.axis.lim = 1.1,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right"))
contRplus_4_33(family = BCT, mu = 1, sigma = c(0.15, 0.2, 0.5),
nu = c(-4, 0, 2), tau = c(100, 5, 1),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 4, ltype = c(1, 2, 3),
no.points = 201, y.axis.lim = 1.1,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right"))
contR01_2_13(family = "BE", mu = c(0.2, 0.5, 0.8), sigma = c(0.2, 0.5, 0.8),
cols=c(gray(.1),gray(.2),gray(.3)),
ltype = c(1, 2, 3), maxy = 7, no.points = 201,
y.axis.lim = 1.1, maxYlim = 10,
cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))
contR01_4_33(family = GB1, mu = c(0.5), sigma = c(0.2, 0.5, 0.7),
nu = c(1, 2, 5), tau = c(0.5, 1, 2),
cols=c(gray(.1),gray(.2),gray(.3)),
maxy = 0.999, ltype = c(1, 2, 3),
no.points = 201, y.axis.lim = 1.1,
maxYlim = 10,cex.axis = 1.5, cex.all = 1.5,
legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))
count_1_31(family = PO, mu = c(1, 2, 5), miny = 0, maxy = 10,
cex.axis = 1.2, cex.all = 1.5)
count_1_22(family = PO, mu = c(1, 2, 5, 10), miny = 0,
maxy = 20, cex.axis = 1.2, cex.all = 1.5)
count_2_32(family = NBI, mu = c(0.5, 1, 5), sigma = c(0.1, 2),
miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_2_32R(family = NBI, mu = c(1, 2), sigma = c(0.1, 1, 2),
miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_2_33(family = NBI, mu = c(0.1, 1, 2), sigma = c(0.5, 1, 2),
miny = 0, maxy = 10, cex.axis = 1.5, cex.all = 1.5)
count_3_32(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1),
nu = c(-0.5, 0.5), miny = 0, maxy = 10, cex.axis = 1.5,
cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.2,
legend.cex=1, legend.x="topright",
legend.where=c("left","right"))
count_3_33(family = SICHEL, mu = c(1, 5, 10), sigma = c(0.5, 1, 2),
nu = c(-0.5, 0.5, 1), miny = 0, maxy = 10, cex.axis = 1.5,
cex.all = 1.5, cols = c("darkgray", "black"), spacing = 0.3,
legend.cex=1, legend.x="topright",
legend.where=c("left","right", "center"))
Arguments
family |
a gamlss family distribution |
mu |
the |
sigma |
The |
nu |
the |
tau |
the |
bd |
the binomial denominator |
miny |
minimal value for the y axis |
maxy |
maximal value for the y axis |
cex.axis |
the size of the letters in the two axes |
cex.all |
the overall size of all plotting characters |
cols |
colours |
spacing |
spacing between plots |
ltype |
The type of lines used |
no.points |
the number of points in the curve |
y.axis.lim |
the maximum value for the y axis |
maxYlim |
the maximum permissible value for Y |
legend.cex |
the size of the legend |
legend.x |
where in the figure to put the legend |
legend.where |
where in the whole plot to put the legend |
Details
Th function plot different types of continuous and discrete distributions:
i) contR
: continuous distribution defined on minus infinity to plus infinity,
ii) contRplus
: continuous distribution defined from zero to plus infinity,
iii) contR01
: continuous distribution defined from zero to 1,
iv) bimom
binomial type discrete distributions,
v) count
count type discrete distributions.
The first number after the first underline in the name of the function indicates the number of parameters in the distribution. The two numbers after the second underline indicate how may rows and columns are in the plot.
Value
The result is a plot
Note
more notes
Author(s)
Mikis Stasinopoulos, Robert Rigby, Gillian Heller, Fernada De Bastiani
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
count_1_31()