ZIP2 {gamlss.dist} | R Documentation |
Zero inflated poisson distribution for fitting a GAMLSS model
Description
The function ZIP2
defines the zero inflated Poisson type 2 distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The functions dZIP2
, pZIP2
, qZIP2
and rZIP2
define the density, distribution function, quantile function
and random generation for the inflated poisson, ZIP2()
, distribution.
The ZIP2 is a different parameterization of the ZIP distribution. In the ZIP2 the mu
is the mean of the distribution.
Usage
ZIP2(mu.link = "log", sigma.link = "logit")
dZIP2(x, mu = 5, sigma = 0.1, log = FALSE)
pZIP2(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIP2(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIP2(n, mu = 5, sigma = 0.1)
Arguments
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Details
The parametrization used for this version of the zero inflated Poison distribution ZIP2
can be found in pp 500-501 of Rigby et al. (2019). Note that the mean of the distribution in this parameterization is \mu
.
Value
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
Author(s)
Bob Rigby, Gillian Heller and Mikis Stasinopoulos
References
Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, Technometrics, 34, pp 1-14.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
ZIP2()# gives information about the default links for the normal distribution
# creating data and plotting them
dat<-rZIP2(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
# fit the disteibution
# library(gamlss)
# mod1<-gamlss(dat~1, family=ZIP2)# fits a constant for mu and sigma
# fitted(mod1)[1]
# fitted(mod1,"sigma")[1]