SICHEL {gamlss.dist} | R Documentation |
The Sichel distribution for fitting a GAMLSS model
Description
The SICHEL()
function defines the Sichel distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dSICHEL
, pSICHEL
, qSICHEL
and rSICHEL
define the density, distribution function, quantile function and random
generation for the Sichel SICHEL()
, distribution. The function VSICHEL
gives the variance of a fitted Sichel model.
The functions ZASICHEL()
and ZISICHEL()
are the zero adjusted (hurdle) and zero inflated versions of the Sichel distribution, respectively. That is four parameter distributions.
The functions dZASICHEL
, dZISICHEL
, pZASICHEL
,pZISICHEL
, qZASICHEL
qZISICHEL
rZASICHEL
and rZISICHEL
define the probability, cumulative, quantile and random
generation functions for the zero adjusted and zero inflated Sichel distributions, ZASICHEL()
, ZISICHEL()
, respectively.
Usage
SICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity")
dSICHEL(x, mu=1, sigma=1, nu=-0.5, log=FALSE)
pSICHEL(q, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE,
log.p = FALSE)
qSICHEL(p, mu=1, sigma=1, nu=-0.5, lower.tail = TRUE,
log.p = FALSE, max.value = 10000)
rSICHEL(n, mu=1, sigma=1, nu=-0.5, max.value = 10000)
VSICHEL(obj)
tofySICHEL(y, mu, sigma, nu)
ZASICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity",
tau.link = "logit")
dZASICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZASICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qZASICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZASICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
max.value = 10000)
ZISICHEL(mu.link = "log", sigma.link = "log", nu.link = "identity",
tau.link = "logit")
dZISICHEL(x, mu = 1, sigma = 1, nu = -0.5, tau = 0.1, log = FALSE)
pZISICHEL(q, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qZISICHEL(p, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rZISICHEL(n, mu = 1, sigma = 1, nu = -0.5, tau = 0.1,
max.value = 10000)
Arguments
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive |
sigma |
vector of positive dispersion parameter |
nu |
vector of |
tau |
vector of probabilities |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log , log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
obj |
a fitted Sichel gamlss model |
y |
the y variable, the |
Details
The probability function of the Sichel distribution SICHEL
is given by
f(y|\mu,\sigma,\nu)= \frac{(\mu/b)^y K_{y+\nu}(\alpha)}{y!(\alpha \sigma)^{y+\nu} K_\nu(\frac{1}{\sigma})}
for y=0,1,2,...,\infty
, \mu>0
, \sigma>0
and -\infty <\nu<\infty
where
\alpha^2=\frac{1}{\sigma^2}+\frac{2\mu}{\sigma}
c=K_{\nu+1}(1/\sigma) / K_{\nu}(1/\sigma)
and K_{\lambda}(t)
is the modified Bessel function of the third kind see pp 508-510 of Rigby et al. (2019).
Note that the above parametrization is different from Stein, Zucchini and Juritz (1988) who use the above probability function
but treat
\mu
, \alpha
and \nu
as the parameters.
The definition of the zero adjusted Sichel distribution, ZASICHEL
and the the zero inflated Sichel distribution, ZISICHEL
, are given in pp. 517-518 and pp. 519-520 of of Rigby et al. (2019), respectively.
Value
Returns a gamlss.family
object which can be used to fit a Sichel distribution in the gamlss()
function.
Note
The mean of the above Sichel distribution is \mu
and the variance is
\mu^2 \left[\frac{2\sigma (\nu+1)}{c} + \frac{1}{c^2}-1\right]
Author(s)
Rigby, R. A., Stasinopoulos D. M., Akantziliotou C and Marco Enea.
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Rigby, R. A., Stasinopoulos, D. M., & Akantziliotou, C. (2008). A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Computational Statistics & Data Analysis, 53(2), 381-393.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
Stein, G. Z., Zucchini, W. and Juritz, J. M. (1987). Parameter Estimation of the Sichel Distribution and its Multivariate Extension. Journal of American Statistical Association, 82, 938-944.
(see also https://www.gamlss.com/).
See Also
gamlss.family
, PIG
, SI
Examples
SICHEL()# gives information about the default links for the Sichel distribution
#plot the pdf using plot
plot(function(y) dSICHEL(y, mu=10, sigma=1, nu=1), from=0, to=100, n=100+1, type="h") # pdf
# plot the cdf
plot(seq(from=0,to=100),pSICHEL(seq(from=0,to=100), mu=10, sigma=1, nu=1), type="h") # cdf
# generate random sample
tN <- table(Ni <- rSICHEL(100, mu=5, sigma=1, nu=1))
r <- barplot(tN, col='lightblue')
# fit a model to the data
# library(gamlss)
# gamlss(Ni~1,family=SICHEL, control=gamlss.control(n.cyc=50))