SEP {gamlss.dist} | R Documentation |
The Skew Power exponential (SEP) distribution for fitting a GAMLSS
Description
This function defines the Skew Power exponential (SEP) distribution, a four parameter distribution,
for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
. The functions dSEP
,
pSEP
, qSEP
and rSEP
define the density,
distribution function, quantile function and random
generation for the Skew Power exponential (SEP) distribution.
Usage
SEP(mu.link = "identity", sigma.link = "log", nu.link = "identity",
tau.link = "log")
dSEP(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pSEP(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
log.p = FALSE)
qSEP(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE,
log.p = FALSE, lower.limit = mu - 5 * sigma,
upper.limit = mu + 5 * sigma)
rSEP(n, mu = 0, sigma = 1, nu = 0, tau = 2)
Arguments
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
lower.limit |
lower limit for the golden search to find quantiles from probabilities |
upper.limit |
upper limit for the golden search to find quantiles from probabilities |
Details
The probability density function of the Skew Power exponential distribution, (SEP
), is defined as
f(y|n,\mu,\sigma\,\nu,\tau)==\frac{z}{\sigma} \Phi(\omega) \hspace{1mm} f_{EP}(z,0,1,\tau)
for -\infty < y < \infty
,
\mu=(-\infty,+\infty)
,
\sigma>0
,
\nu=(-\infty,+\infty)
and
\tau>0
. where z =
\frac{y-\mu}{\sigma}
, \omega =
sign(z)|z|^{\tau/2}\nu \sqrt{2/\tau}
and f_{EP}(z,0,1,\tau)
is
the pdf of an Exponential Power distribution.
Value
SEP()
returns a gamlss.family
object which can be used to fit the SEP distribution in the gamlss()
function.
dSEP()
gives the density, pSEP()
gives the distribution
function, qSEP()
gives the quantile function, and rSEP()
generates random deviates.
Warning
The qSEP and rSEP are slow since they are relying on golden section for finding the quantiles
Author(s)
Bob Rigby and Mikis Stasinopoulos
References
Diciccio, T. J. and Mondi A. C. (2004). Inferential Aspects of the Skew Exponential Power distribution., JASA, 99, 439-450.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
SEP() #
plot(function(x)dSEP(x, mu=0,sigma=1, nu=1, tau=2), -5, 5,
main = "The SEP density mu=0,sigma=1,nu=1, tau=2")
plot(function(x) pSEP(x, mu=0,sigma=1,nu=1, tau=2), -5, 5,
main = "The BCPE cdf mu=0, sigma=1, nu=1, tau=2")
dat <- rSEP(100,mu=10,sigma=1,nu=-1,tau=1.5)
# library(gamlss)
# gamlss(dat~1,family=SEP, control=gamlss.control(n.cyc=30))