GU {gamlss.dist} | R Documentation |
The Gumbel distribution for fitting a GAMLSS
Description
The function GU
defines the Gumbel distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
.
The functions dGU
, pGU
, qGU
and rGU
define the density, distribution function, quantile function and random
generation for the specific parameterization of the Gumbel distribution.
Usage
GU(mu.link = "identity", sigma.link = "log")
dGU(x, mu = 0, sigma = 1, log = FALSE)
pGU(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qGU(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rGU(n, mu = 0, sigma = 1)
Arguments
mu.link |
Defines the |
sigma.link |
Defines the |
x , q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Details
The specific parameterization of the Gumbel distribution used in GU
is
f(y|\mu,\sigma)=\frac{1}{\sigma} \hspace{1mm}
\exp\left\{\left(\frac{y-\mu}{\sigma}\right)-\exp\left(\frac{y-\mu}{\sigma}\right)\right\}
for y=(-\infty,\infty)
, \mu=(-\infty,+\infty)
and \sigma>0
, see pp. 366-367 of Rigby et al. (2019).
Value
GU()
returns a gamlss.family
object which can be used to fit a Gumbel distribution in the gamlss()
function.
dGU()
gives the density, pGU()
gives the distribution
function, qGU()
gives the quantile function, and rGU()
generates random deviates.
Note
The mean of the distribution is \mu-0.57722 \sigma
and the variance is
\pi^2 \sigma^2/6
.
Author(s)
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \doi10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
plot(function(x) dGU(x, mu=0,sigma=1), -6, 3,
main = "{Gumbel density mu=0,sigma=1}")
GU()# gives information about the default links for the Gumbel distribution
dat<-rGU(100, mu=10, sigma=2) # generates 100 random observations
hist(dat)
# library(gamlss)
# gamlss(dat~1,family=GU) # fits a constant for each parameter mu and sigma