GT {gamlss.dist} | R Documentation |
The generalized t distribution for fitting a GAMLSS
Description
This function defines the generalized t distribution, a four parameter distribution,
for a gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
.
The functions dGT
,
pGT
, qGT
and rGT
define the density,
distribution function, quantile function and random
generation for the generalized t distribution.
Usage
GT(mu.link = "identity", sigma.link = "log", nu.link = "log",
tau.link = "log")
dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE)
pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
rGT(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
Arguments
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x , q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness |
tau |
vector of kurtosis |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Details
The probability density function of the generalized t distribution, (GT
), , is defined as
f(y|\mu,\sigma\,\nu,\tau)= \tau \left\{2\sigma \nu^{1/\tau} B\left(\frac{1}{\tau},\nu\right)[1+|z|^{\tau}/\nu]^{\nu+1/\tau} \right\}^{-1}
where -\infty < y < \infty
, z=(y-\mu)/\sigma
\mu=(-\infty,+\infty)
,
\sigma>0
,
\nu>0
and
\tau>0
, see pp. 387-388 of Rigby et al. (2019).
Value
GT()
returns a gamlss.family
object which can be used to fit the GT distribution in the
gamlss()
function.
dGT()
gives the density, pGT()
gives the distribution
function, qGT()
gives the quantile function, and rGT()
generates random deviates.
Warning
The qGT and rGT are slow since they are relying on optimization for finding the quantiles
Author(s)
Bob Rigby and Mikis Stasinopoulos
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
(see also https://www.gamlss.com/).
See Also
Examples
GT() #
y<- rGT(200, mu=5, sigma=1, nu=1, tau=4)
hist(y)
curve(dGT(x, mu=5 ,sigma=2,nu=1, tau=4), -2, 11,
main = "The GT density mu=5 ,sigma=1, nu=1, tau=4")
# library(gamlss)
# m1<-gamlss(y~1, family=GT)