BCCG {gamlss.dist} | R Documentation |
Box-Cox Cole and Green distribution (or Box-Cox normal) for fitting a GAMLSS
Description
The function BCCG
defines the Box-Cox Cole and Green distribution (Box-Cox normal), a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions dBCCG
, pBCCG
, qBCCG
and rBCCG
define the density, distribution function, quantile function and random generation for the specific parameterization of the Box-Cox Cole and Green distribution.
[The function BCCGuntr()
is the original version of the function suitable only for the untruncated Box-Cox Cole and Green distribution
See Cole and Green (1992) and Rigby and Stasinopoulos (2003a, 2003b) for details.
The function BCCGo
is identical to BCCG
but with log link for mu.
Usage
BCCG(mu.link = "identity", sigma.link = "log", nu.link = "identity")
BCCGo(mu.link = "log", sigma.link = "log", nu.link = "identity")
BCCGuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity")
dBCCG(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCG(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCG(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCG(n, mu = 1, sigma = 0.1, nu = 1)
dBCCGo(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)
pBCCGo(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
qBCCGo(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)
rBCCGo(n, mu = 1, sigma = 0.1, nu = 1)
Arguments
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x , q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of skewness parameter values |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Details
The probability distribution function of the untrucated Box-Cox Cole and Green distribution, BCCGuntr
, is defined as
f(y|\mu,\sigma,\nu)=\frac{1}{\sqrt{2\pi}\sigma}\frac{y^{\nu-1}}{\mu^\nu} \exp(-\frac{z^2}{2})
where if \nu \neq 0
then z=[(y/\mu)^{\nu}-1]/(\nu \sigma)
else
z=\log(y/\mu)/\sigma
,
for y>0
, \mu>0
, \sigma>0
and \nu=(-\infty,+\infty)
.
The Box-Cox Cole and Green distribution, BCCG
, adjusts the above density f(y|\mu,\sigma,\nu)
for the
truncation resulting from the condition y>0
. See Rigby and Stasinopoulos (2003a, 2003b) or pp. 439-441 of Rigby et al. (2019) for details.
Value
BCCG()
returns a gamlss.family
object which can be used to fit a Cole and Green distribution in the gamlss()
function.
dBCCG()
gives the density, pBCCG()
gives the distribution
function, qBCCG()
gives the quantile function, and rBCCG()
generates random deviates.
Warning
The BCCGuntr
distribution may be unsuitable for some combinations of the parameters
(mainly for large \sigma
)
where the integrating constant is less than 0.99. A warning will be given if this is the case.
The BCCG distribution is suitable for all combinations of the distributional parameters within
their range [i.e. \mu>0
, \sigma>0
, \nu=(-\infty, +\infty)
]
Note
\mu
is the median of the distribution \sigma
is approximately the coefficient of variation (for small values of \sigma
),
and \nu
controls the skewness.
The BCCG
distribution is suitable for all combinations of the parameters within their ranges
[i.e. \mu>0,\sigma>0, {\rm and} \nu=(-\infty,\infty)
]
Author(s)
Mikis Stasinopoulos, Bob Rigby and Kalliope Akantziliotou
References
Cole, T. J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penalized likelihood, Statist. Med. 11, 1305–1319
Rigby, R. A. and Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox Power Exponential distribution. Statistics in Medicine, 23: 3053-3076.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox t distribution in GAMLSS to mode skewnees and and kurtosis. Statistical Modelling, 6(3) :209. doi:10.1191/1471082X06st122oa
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/9780429298547 An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
Examples
BCCG() # gives information about the default links for the Cole and Green distribution
# library(gamlss)
#data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCCG, data=abdom)
#plot(h)
plot(function(x) dBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20,
main = "The BCCG density mu=5,sigma=.5,nu=-1")
plot(function(x) pBCCG(x, mu=5,sigma=.5,nu=-1), 0.0, 20,
main = "The BCCG cdf mu=5, sigma=.5, nu=-1")