KIGEOMo {gamlss.countKinf}R Documentation

K-inflated Geometric original distributions for fitting a GAMLSS model

Description

The function KIGEOMo defines the K-inflated Geometric original distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The functions dKIGEOMo, pKIGEOMo, qKIGEOMo and rKIGEOMo define the density, distribution function, quantile function and random generation for the K-inflated Geometric original, KIGEOMo(), distribution.

Usage


 KIGEOMo(mu.link = "logit", sigma.link = "logit", kinf="K")

dKIGEOMo(x, mu = .1, sigma = 0.1, kinf=0, log = FALSE)

pKIGEOMo(q, mu = .1, sigma = 0.1, kinf=0, lower.tail = TRUE, log.p = FALSE)

qKIGEOMo(p, mu = 1, sigma = 0.1, kinf=0, lower.tail = TRUE, log.p = FALSE)

rKIGEOMo(n, mu = 1, sigma = 0.1, kinf=0)

Arguments

mu.link

Defines the mu.link, with "logit" link as the default for the mu parameter

sigma.link

Defines the sigma.link, with "logit" link as the default for the sigma parameter

x

vector of (non-negative integer) quantiles

mu

vector of positive means

sigma

vector of inflated point probability

p

vector of probabilities

q

vector of quantiles

n

number of random values to return

kinf

defines inflated point in generating K-inflated distribution

log, log.p

logical; if TRUE, probabilities p are given as log(p)

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]

Details

The definition for the K-inflated Geometric original distribution.

Value

The functions KIGEOMo return a gamlss.family object which can be used to fit K-inflated Geometric original distribution in the gamlss() function.

Author(s)

Saeed Mohammadpour <s.mohammadpour1111@gamlil.com>, Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion),Appl. Statist.,54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or seehttp://www.gamlss.org/)

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017)Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.

Najafabadi, A. T. P. and MohammadPour, S. (2017). A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate-Making Systems. Asia-Pacific Journal of Risk and Insurance, 12.

See Also

gamlss.family, KIGEOMo

Examples

#--------------------------------------------------------------------------------

# gives information about the default links for the  Geometric original distribution
KIGEOMo()
#--------------------------------------------------------------------------------

# generate zero inflated Geometric original distribution
gen.Kinf(family=GEOMo, kinf=0)

# generate random sample from zero inflated Geometric original distribution
x<-rinf0GEOMo(1000,mu=.5, sigma=.2)

# fit the zero inflated Geometric original distribution using gamlss
data<-data.frame(x=x)
## Not run: 
gamlss(x~1, family=inf0GEOMo, data=data)
histDist(x, family=inf0GEOMo)
## End(Not run)
#--------------------------------------------------------------------------------

# generated one inflated Geometric original distribution
gen.Kinf(family=GEOMo, kinf=1)

# generate random sample from one inflated Geometric original distribution
x<-rinf1GEOMo(1000,mu=.5, sigma=.2)

# fit the one inflated Geometric original distribution using gamlss
data<-data.frame(x=x)
## Not run: 
gamlss(x~1, family=inf1GEOMo, data=data)
histDist(x, family=inf1GEOMo)
## End(Not run)
#--------------------------------------------------------------------------------

mu=.3; sigma=.2;
par(mgp=c(2,1,0),mar=c(4,4,4,1)+0.1)
#plot the pdf using plot
plot(function(x) dinf1GEOMo(x, mu=mu, sigma=sigma), from=0, to=20, n=20+1,
     type="h",xlab="x",ylab="f(x)",cex.lab=1.5)
#--------------------------------------------------------------------------------

#plot the cdf using plot
cdf <- stepfun(0:19, c(0,pinf1GEOMo(0:19, mu=mu, sigma=sigma)), f = 0)
plot(cdf, xlab="x", ylab="F(x)", verticals=FALSE, cex.points=.8, pch=16, main=""      ,cex.lab=1.5)
#--------------------------------------------------------------------------------

#plot the qdf using plot
invcdf <- stepfun(seq(0.01,.99,length=19), qinf1GEOMo(seq(0.1,.99,length=20),mu, sigma), f = 0)
plot(invcdf, ylab=expression(x[p]==F^{-1}(p)), do.points=FALSE,verticals=TRUE,
     cex.points=.8, pch=16, main="",cex.lab=1.5, xlab="p")
#--------------------------------------------------------------------------------

# generate random sample
Ni <- rinf1GEOMo(1000, mu=mu, sigma=sigma)
 hist(Ni,breaks=seq(min(Ni)-0.5,max(Ni)+0.5,by=1),col="lightgray", main="",cex.lab=2)
barplot(table(Ni))
#--------------------------------------------------------------------------------

[Package gamlss.countKinf version 3.5.1 Index]