gamlss.nn {gamlss.add} | R Documentation |
Support for Function nn()
Description
This is support for the smoother function nn() an interface for Brian Reply's nnet()
function.
It is not intended to be called directly by users.
Usage
gamlss.nn(x, y, w, xeval = NULL, ...)
Arguments
x |
the explanatory variables |
y |
iterative y variable |
w |
iterative weights |
xeval |
if xeval=TRUE then predicion is used |
... |
for extra arguments |
Author(s)
Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Bob Rigby
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby R.A., Stasinopoulos D. M., Heller G., and De Bastiani F., (2019) Distributions for Modeling Location, Scale and Shape: Using GAMLSS in R, Chapman and Hall/CRC.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1–46, doi:10.18637/jss.v023.i07
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.