prostate {gamair} | R Documentation |
Prostate cancer screening data
Description
Protein mass spectographs for patients with normal, benign enlargement and cancer of the prostate gland.
Usage
data(prostate)
Format
A three item list
- type
1 for normal, 2 for benign enlargement and 3 for cancerous.
- intensity
A matrix with rows corresponding to measurements in
type
. Each row is a normalized spectral intensity measurement for the protein mass given inMZ
- MZ
Matrix corresponding to
intensity
giving the protein masses in Daltons.Actually all rows are identical.
Details
See the source article for fuller details. The intensity data here have been smoothed so that each measurement is an average of 40 adjacent measurements from the raw spectrum. The intensity data have also been rounded to 3 significant figures. This pre-processing was done to reduce the dataset size to something reasonable for distribution.
Source
Originally from the msProstate package version 1.0.2.
References
Adam, B-L. Y. Qu, J.W. Davis et al. (2002) Serum Protein Fingerprinting Coupled with a Pattern-matching Algorithm Distinguishes Prostate Cancer from Benign Prostate Hyperplasia and Healthy Men. Cancer Research 62:3609-3614
Examples
require(gamair);require(mgcv)
data(prostate)
## plot some spectra...
par(mfrow=c(2,3),mar=c(5,5,3,1))
ind <- c(1,163,319)
lab <- list("Healthy","Enlarged","Cancer")
for (i in 1:3) {
plot(prostate$MZ[ind[i],],prostate$intensity[ind[i],],type="l",ylim=c(0,60),
xlab="Daltons",ylab="Intensity",main=lab[[i]],cex.axis=1.4,cex.lab=1.6)
lines(prostate$MZ[ind[i],],prostate$intensity[ind[i]+2,]+5,col=2)
lines(prostate$MZ[ind[i],],prostate$intensity[ind[i]+4,]+10,col=4)
}
## treat as ordered cat control, bph, cancer
b <- gam(type ~ s(MZ,by=intensity,k=100),family=ocat(R=3),
data=prostate,method="ML")
## results...
pb <- predict(b,type="response")
plot(b,rug=FALSE,scheme=1,xlab="Daltons",ylab="f(D)",
cex.lab=1.6,cex.axis=1.4,main="a")
plot(factor(prostate$type),pb[,3],cex.lab=1.6,cex.axis=1.4,main="b")
qq.gam(b,rep=100,lev=.95,cex.lab=1.6,cex.axis=1.4,main="c")