medmad {galts} | R Documentation |
Function for detecting regression outliers
Description
A method for detecting regression outliers.
Usage
medmad(formula, h=NULL, csteps=20)
Arguments
formula |
Dependent ~ Independents style formula as same in lm() and glm(). |
h |
User defined variable to define the majority of the data. Default is floor(n/2)+floor((p+1)/2) where n is the number of observations and p is the number of parameters to estimate |
csteps |
Number of C-steps to be performed for each candidate solution. Default is 2. |
Value
coefficients |
A vector of estimated parameters |
crit |
LTS criterion value for the reported coefficients |
residuals |
Calculated residuals from the final estimate of model |
Author(s)
Mehmet Hakan Satman
Examples
n <- 100
x1 <- rnorm(n,0,10)
x2 <- rnorm(n,0,10)
x3 <- rnorm(n,0,10)
x4 <- rnorm(n,0,10)
e <- rnorm(n)
x <- cbind(1, x1, x2, x3, x4)
p <- 5
betas <- rep(5,p)
c <- 0.20
h <- n - n*c
y <- 5 + 5*x1 + 5*x2 + 5*x3 + 5*x4 + e
x1[(h + 1):n] <- rnorm(n-h, 100, 10)
x2[(h + 1):n] <- rnorm(n-h, 100, 10)
x3[(h + 1):n] <- rnorm(n-h, 100, 10)
x4[(h + 1):n] <- rnorm(n-h, 100, 10)
mm <- medmad(formula = y ~ x1 + x2 + x3 + x4, csteps = 10)
[Package galts version 1.3.2 Index]