multisession {future} | R Documentation |
Create a multisession future whose value will be resolved asynchronously in a parallel R session
Description
A multisession future is a future that uses multisession evaluation, which means that its value is computed and resolved in parallel in another R session.
Usage
multisession(
...,
workers = availableCores(),
lazy = FALSE,
rscript_libs = .libPaths(),
envir = parent.frame()
)
Arguments
... |
Additional arguments passed to |
workers |
The number of parallel processes to use. If a function, it is called without arguments when the future is created and its value is used to configure the workers. |
lazy |
If FALSE (default), the future is resolved eagerly (starting immediately), otherwise not. |
rscript_libs |
A character vector of R package library folders that
the workers should use. The default is |
envir |
The environment from where global objects should be identified. |
Details
This function is not meant to be called directly. Instead, the typical usages are:
# Evaluate futures in parallel on the local machine via as many background # processes as available to the current R process plan(multisession) # Evaluate futures in parallel on the local machine via two background # processes plan(multisession, workers = 2)
The background R sessions (the "workers") are created using
makeClusterPSOCK()
.
For the total number of
R sessions available including the current/main R process, see
parallelly::availableCores()
.
A multisession future is a special type of cluster future.
Value
A MultisessionFuture.
If workers == 1
, then all processing is done in the
current/main R session and we therefore fall back to using a
lazy future. To override this fallback, use workers = I(1)
.
See Also
For processing in multiple forked R sessions, see multicore futures.
Use parallelly::availableCores()
to see the total number of
cores that are available for the current R session.
Examples
## Use multisession futures
plan(multisession)
## A global variable
a <- 0
## Create future (explicitly)
f <- future({
b <- 3
c <- 2
a * b * c
})
## A multisession future is evaluated in a separate R session.
## Changing the value of a global variable will not affect
## the result of the future.
a <- 7
print(a)
v <- value(f)
print(v)
stopifnot(v == 0)
## Explicitly close multisession workers by switching plan
plan(sequential)