FMGM_mc {fusedMGM} | R Documentation |
Main function of fused MGM
Description
Infers networks from 2-class mixed data
Usage
FMGM_mc(
data,
ind_disc,
group,
t = 1,
L = NULL,
eta = 2,
lambda_intra,
lambda_intra_prior = NULL,
lambda_inter,
with_prior = FALSE,
prior_list = NULL,
converge_by_edge = TRUE,
tol_edge = 3,
tol_mgm = 1e-04,
tol_g = 0.005,
tol_fpa = 1e-12,
maxit = 1e+06,
polish = TRUE,
tol_polish = 1e-12,
cores = parallel::detectCores(),
verbose = FALSE
)
Arguments
data |
Data frame with rows as observations and columns as variables |
ind_disc |
Indices of discrete variables |
group |
Group indices, must be provided with the observation names |
t |
Numeric. Initial value of coefficient that reflect 2 previous iterations in fast proximal gradient method. Default: 1 |
L |
Numeric. Initial guess of Lipschitz constant. Default: missing (use backtracking) |
eta |
Numeric. Multipliers for L in backtracking. Default: 2 |
lambda_intra |
Vector with 3 numeric variables. Penalization parameters for network edge weights |
lambda_intra_prior |
Vector with 3 numeric variables. Penalization parameters for network edge weights, applied to the edges with prior information |
lambda_inter |
Vector with 3 numeric variables. Penalization parameters for network edge weight differences |
with_prior |
Logical. Is prior information provided? Default: FALSE |
prior_list |
List of prior information. Each element must be a 3-column data frames, with the 1st and the 2nd columns being variable names and the 3rd column being prior confidence (0,1) |
converge_by_edge |
Logical. The convergence should be judged by null differences of network edges after iteration. If FALSE, the rooted mean square difference (RMSD) of edge weights is used. Default: TRUE |
tol_edge |
Integer. Number of consecutive iterations of convergence to stop the iteration. Default: 3 |
tol_mgm |
Numeric. Cutoff of network edge RMSD for convergence. Default: 1e-04 |
tol_g |
Numeric. Cutoff of iternations in prox-grad map calculation. Default: 5e-03 |
tol_fpa |
Numeric. Cutoff for fixed-point approach. Default: 1e-12 |
maxit |
Integer. Maximum number of iterations in fixed-point approach. Default: 1000000 |
polish |
Logical. Should the edges with the weights below the cutoff should be discarded? Default: TRUE |
tol_polish |
Numeric. Cutoff of polishing the resulting network. Default: 1e-12 |
cores |
Integer. Number of cores to use multi-core utilization. Default: maximum number of available cores |
verbose |
Logical. If TRUE, the procedures are reported in real-time manner. Default: FALSE |
Details
If the value of Lipschitz constant, L, is not provided, the backtracking will be performed
Value
The resulting networks, in the form of a list of MGMs
Examples
data(data_all) ; # Example 500-by-100 simulation data
data(ind_disc) ;
group <- rep(c(1,2), each=250) ;
names(group) <- seq(500) ;
if (Sys.info()['sysname'] == 'Windows') {
cores=1
} else {
cores=parallel::detectCores() ;
}
res_FMGM <- FMGM_mc(data_all, ind_disc, group,
lambda_intra=c(0.2,0.15,0.1), lambda_inter=c(0.2,0.15,0.1),
cores=cores, verbose=TRUE)