wavk_test {funtimes} | R Documentation |
WAVK Trend Test
Description
Nonparametric test to detect (non-)monotonic parametric trends in time series (based on Lyubchich et al. 2013).
Usage
wavk_test(
formula,
factor.length = c("user.defined", "adaptive.selection"),
Window = NULL,
q = 3/4,
j = c(8:11),
B = 1000,
method = c("boot", "asympt"),
ar.order = NULL,
ar.method = "HVK",
ic = "BIC",
out = FALSE
)
Arguments
formula |
an object of class " |
factor.length |
method to define the length of local windows (factors).
Default option |
Window |
length of the local window (factor), default is
|
q |
scalar from 0 to 1 to define the set of possible windows when
|
j |
numeric vector to define the set of possible windows when
|
B |
number of bootstrap simulations to obtain empirical critical values. Default is 1000. |
method |
method of obtaining critical values: from asymptotical ( |
ar.order |
order of the autoregressive model when |
ar.method |
method of estimating autoregression coefficients.
Default |
ic |
information criterion used to select the order of autoregressive filter (AIC of BIC),
considering models of orders |
out |
logical value indicates whether the full output should be shown.
Default is |
Details
See more details in Lyubchich and Gel (2016) and Lyubchich (2016).
Value
A list with class "htest"
containing the following components:
method |
name of the method. |
data.name |
name of the data. |
statistic |
value of the test statistic. |
p.value |
|
alternative |
alternative hypothesis. |
parameter |
window that was used. |
estimate |
list with the following elements: estimated trend coefficients;
user-defined or IC-selected AR order; estimated AR coefficients; and,
if |
Author(s)
Yulia R. Gel, Vyacheslav Lyubchich, Ethan Schaeffer
References
Bickel PJ, Sakov A (2008).
“On the choice of m
in the m
out of n
bootstrap and confidence bounds for extrema.”
Statistica Sinica, 18(3), 967–985.
Hall P, Van Keilegom I (2003).
“Using difference-based methods for inference in nonparametric regression with time series errors.”
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 65(2), 443–456.
doi:10.1111/1467-9868.00395.
Lyubchich V (2016).
“Detecting time series trends and their synchronization in climate data.”
Intelligence. Innovations. Investments, 12, 132–137.
Lyubchich V, Gel YR (2016).
“A local factor nonparametric test for trend synchronism in multiple time series.”
Journal of Multivariate Analysis, 150, 91–104.
doi:10.1016/j.jmva.2016.05.004.
Lyubchich V, Gel YR, El-Shaarawi A (2013).
“On detecting non-monotonic trends in environmental time series: a fusion of local regression and bootstrap.”
Environmetrics, 24(4), 209–226.
doi:10.1002/env.2212.
See Also
ar
, HVK
, WAVK
,
sync_test
, vignette("trendtests", package = "funtimes")
Examples
# Fix seed for reproducible simulations:
set.seed(1)
#Simulate autoregressive time series of length n with smooth quadratic trend:
n <- 100
tsTrend <- 1 + 2*(1:n/n) + 4*(1:n/n)^2
tsNoise <- arima.sim(n = n, list(order = c(2, 0, 0), ar = c(-0.7, -0.1)))
U <- tsTrend + tsNoise
plot.ts(U)
#Test H0 of a linear trend, with m-out-of-n selection of the local window:
## Not run:
wavk_test(U ~ t, factor.length = "adaptive.selection")
## End(Not run)
# Sample output:
## Trend test by Wang, Akritas, and Van Keilegom (bootstrap p-values)
##
##data: U
##WAVK test statistic = 5.3964, adaptively selected window = 4, p-value < 2.2e-16
##alternative hypothesis: trend is not of the form U ~ t.
#Test H0 of a quadratic trend, with m-out-of-n selection of the local window
#and output of all results:
## Not run:
wavk_test(U ~ poly(t, 2), factor.length = "adaptive.selection", out = TRUE)
## End(Not run)
# Sample output:
## Trend test by Wang, Akritas, and Van Keilegom (bootstrap p-values)
##
##data: U
##WAVK test statistic = 0.40083, adaptively selected window = 4, p-value = 0.576
##alternative hypothesis: trend is not of the form U ~ poly(t, 2).
##sample estimates:
##$trend_coefficients
##(Intercept) poly(t, 2)1 poly(t, 2)2
## 3.408530 17.681422 2.597213
##
##$AR_order
##[1] 1
##
##$AR_coefficients
## phi_1
##[1] -0.7406163
##
##$all_considered_windows
## Window WAVK-statistic p-value
## 4 0.40083181 0.576
## 5 0.06098625 0.760
## 7 -0.57115451 0.738
## 10 -1.02982929 0.360
# Test H0 of no trend (constant trend) using asymptotic distribution of statistic.
wavk_test(U ~ 1, method = "asympt")
# Sample output:
## Trend test by Wang, Akritas, and Van Keilegom (asymptotic p-values)
##
##data: U
##WAVK test statistic = 25.999, user-defined window = 10, p-value < 2.2e-16
##alternative hypothesis: trend is not of the form U ~ 1.