HVK {funtimes} | R Documentation |
HVK Estimator
Description
Estimate coefficients in nonparametric autoregression using the difference-based approach by Hall and Van Keilegom (2003).
Usage
HVK(X, m1 = NULL, m2 = NULL, ar.order = 1)
Arguments
X |
univariate time series. Missing values are not allowed. |
m1 , m2 |
subsidiary smoothing parameters. Default
|
ar.order |
order of the nonparametric autoregression (specified by user). |
Details
First, autocovariances are estimated using formula (2.6) by Hall and Van Keilegom (2003):
\hat{\gamma}(0)=\frac{1}{m_2-m_1+1}\sum_{m=m_1}^{m_2}
\frac{1}{2(n-m)}\sum_{i=m+1}^{n}\{(D_mX)_i\}^2,
\hat{\gamma}(j)=\hat{\gamma}(0)-\frac{1}{2(n-j)}\sum_{i=j+1}^n\{(D_jX)_i\}^2,
where n
= length(X)
is sample size, D_j
is a difference operator
such that (D_jX)_i=X_i-X_{i-j}
. Then, Yule–Walker method is used to
derive autoregression coefficients.
Value
Vector of length ar.order
with estimated autoregression coefficients.
Author(s)
Yulia R. Gel, Vyacheslav Lyubchich, Xingyu Wang
References
Hall P, Van Keilegom I (2003). “Using difference-based methods for inference in nonparametric regression with time series errors.” Journal of the Royal Statistical Society, Series B (Statistical Methodology), 65(2), 443–456. doi:10.1111/1467-9868.00395.
See Also
Examples
X <- arima.sim(n = 300, list(order = c(1, 0, 0), ar = c(0.6)))
HVK(as.vector(X), ar.order = 1)