plot_K_functions {funkycells}R Documentation

Compare K Functions Between outcomes

Description

This function plots K functions from different outcomes for comparison. Group means are included as bold lines. Additionally a reference line for a spatially random process can be included.

Usage

plot_K_functions(data, inc.legend = TRUE, inc.noise = FALSE)

Arguments

data

Data.frame with named columns r, K, unit, and outcome. The column r indicates the radius of checked K function, K indicates the K function value, unit specifies the unique K function, and outcome indicates the unit outcome.

inc.legend

(Optional) Boolean indicating if the legend should be given. This will also include numbers to indicate if any K functions are missing. The default is TRUE.

inc.noise

(Optional) Boolean indicating if a gray, dashed line should be included to show what spatially random noise would be like. The default is FALSE.

Value

ggplot2 object showing the K function with a superimposed average.

Examples

# Example 1
tmp <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 0, -1],
  agents = c("Tumor", "Tumor"),
  unit = "Person",
  rCheckVals = seq(0, 50, 1)
)
tmp1 <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 1, -1],
  agents = c("Tumor", "Tumor"),
  unit = "Person",
  rCheckVals = seq(0, 50, 1)
)
tmp_1 <- tidyr::pivot_longer(data = tmp, cols = K1:K18)
tmp1_1 <- tidyr::pivot_longer(data = tmp1, cols = K1:K15)

data_plot <- rbind(
  data.frame(
    "r" = tmp_1$r,
    "K" = tmp_1$value,
    "unit" = tmp_1$name,
    "outcome" = "0"
  ),
  data.frame(
    "r" = tmp1_1$r,
    "K" = tmp1_1$value,
    "unit" = paste0(tmp1_1$name, "_1"),
    "outcome" = "1"
  )
)

pk1 <- plot_K_functions(data_plot)

# Example 2
tmp <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 0, -1],
  agents = c("Tumor", "B"), unit = "Person",
  rCheckVals = seq(0, 50, 1)
)
tmp1 <- getKFunction(TNBC_pheno[TNBC_pheno$Class == 1, -1],
  agents = c("Tumor", "B"), unit = "Person",
  rCheckVals = seq(0, 50, 1)
)

tmp_1 <- tidyr::pivot_longer(data = tmp, cols = K1:K18)
tmp1_1 <- tidyr::pivot_longer(data = tmp1, cols = K1:K15)

data_plot <- rbind(
  data.frame(
    "r" = tmp_1$r,
    "K" = tmp_1$value,
    "unit" = tmp_1$name,
    "outcome" = "0"
  ),
  data.frame(
    "r" = tmp1_1$r,
    "K" = tmp1_1$value,
    "unit" = paste0(tmp1_1$name, "_1"),
    "outcome" = "1"
  )
)

pk2 <- plot_K_functions(data_plot)

[Package funkycells version 1.1.1 Index]