predict_fof_pc {funcharts} | R Documentation |
Use a function-on-function linear regression model for prediction
Description
Predict new observations of the functional response variable and calculate the corresponding prediction error (and their standardized or studentized version) given new observations of functional covariates and a fitted function-on-function linear regression model.
Usage
predict_fof_pc(object, mfdobj_y_new, mfdobj_x_new)
Arguments
object |
A list obtained as output from |
mfdobj_y_new |
An object of class |
mfdobj_x_new |
An object of class |
Value
A list of mfd objects. It contains:
-
pred_error
: the prediction error of the standardized functional response variable, -
pred_error_original_scale
: the prediction error of the functional response variable on the original scale, -
y_hat_new
: the prediction of the functional response observations on the original scale, -
y_z_new
: the standardized version of the functional response observations provided inmfdobj_y_new
, -
y_hat_z_new
: the prediction of the functional response observations on the standardized/studentized scale.
References
Centofanti F, Lepore A, Menafoglio A, Palumbo B, Vantini S. (2021) Functional Regression Control Chart. Technometrics, 63(3), 281–294. doi:10.1080/00401706.2020.1753581
Examples
library(funcharts)
data("air")
air <- lapply(air, function(x) x[1:10, , drop = FALSE])
fun_covariates <- c("CO", "temperature")
mfdobj_x <- get_mfd_list(air[fun_covariates], lambda = 1e-2)
mfdobj_y <- get_mfd_list(air["NO2"], lambda = 1e-2)
mod <- fof_pc(mfdobj_y, mfdobj_x)
predict_fof_pc(mod,
mfdobj_y_new = mfdobj_y,
mfdobj_x_new = mfdobj_x)