RoMFCC_PhaseII {funcharts} | R Documentation |
Robust Multivariate Functional Control Charts - Phase II
Description
It calculates the Hotelling's and SPE monitoring statistics needed to plot the Robust Multivariate Functional Control Chart in Phase II.
Usage
RoMFCC_PhaseII(mfdobj_new, mod_phase1)
Arguments
mfdobj_new |
A multivariate functional data object of class mfd, containing the Phase II observations to be monitored. |
mod_phase1 |
Output obtained by applying the function |
Value
A data.frame
with as many rows as the number of
multivariate functional observations in the phase II data set and
the following columns:
one
id
column identifying the multivariate functional observation in the phase II data set,one
T2
column containing the Hotelling T2 statistic calculated for all observations,one column per each functional variable, containing its contribution to the T2 statistic,
one
spe
column containing the SPE statistic calculated for all observations,-
T2_lim
gives the upper control limit of the Hotelling's T2 control chart, -
spe_lim
gives the upper control limit of the SPE control chart
References
Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control Charts. Technometrics, doi:10.1080/00401706.2024.2327346.
Examples
## Not run:
library(funcharts)
mfdobj <- get_mfd_list(air, n_basis = 5)
nobs <- dim(mfdobj$coefs)[2]
set.seed(0)
ids <- sample(1:nobs)
mfdobj1 <- mfdobj[ids[1:100]]
mfdobj_tuning <- mfdobj[ids[101:300]]
mfdobj2 <- mfdobj[ids[-(1:300)]]
mod_phase1 <- RoMFCC_PhaseI(mfdobj = mfdobj1,
mfdobj_tuning = mfdobj_tuning)
phase2 <- RoMFCC_PhaseII(mfdobj_new = mfdobj2,
mod_phase1 = mod_phase1)
plot_control_charts(phase2)
## End(Not run)