RoMFCC_PhaseI {funcharts} | R Documentation |
Robust Multivariate Functional Control Charts - Phase I
Description
It performs Phase I of the Robust Multivariate Functional Control Chart (RoMFCC) as proposed by Capezza et al. (2024).
Usage
RoMFCC_PhaseI(
mfdobj,
mfdobj_tuning = NULL,
functional_filter_par = list(filter = TRUE),
imputation_par = list(method_imputation = "RoMFDI"),
pca_par = list(fev = 0.7),
alpha = 0.05
)
Arguments
mfdobj |
A multivariate functional data object of class mfd. A functional filter is applied to this data set, then flagged functional componentwise outliers are imputed in the robust imputation step. Finally robust multivariate functional principal component analysis is applied to the imputed data set for dimension reduction. |
mfdobj_tuning |
An additional functional data object of class mfd. After applying the filter and imputation steps on this data set, it is used to robustly estimate the distribution of the Hotelling's T2 and SPE statistics in order to calculate control limits to prevent overfitting issues that could reduce the monitoring performance of the RoMFCC. Default is NULL, but it is strongly recommended to use a tuning data set. |
functional_filter_par |
A list with an argument |
imputation_par |
A list with an argument |
pca_par |
A list with an argument |
alpha |
The overall nominal type-I error probability used to set control chart limits. Default value is 0.05. |
Value
A list of the following elements that are needed in Phase II:
-
T2
the Hotelling's T2 statistic values for the Phase I data set, -
SPE
the SPE statistic values for the Phase I data set, -
T2_tun
the Hotelling's T2 statistic values for the tuning data set, -
SPE_tun
the SPE statistic values for the tuning data set, -
T2_lim
the Phase II control limit of the Hotelling's T2 control chart, -
spe_lim
the Phase II control limit of the SPE control chart, -
tuning
TRUE if the tuning data set is provided, FALSE otherwise, -
mod_pca
the final RoMFPCA model fitted on the Phase I data set, -
K
= K the number of selected principal components, -
T_T2_inv
if a tuning data set is provided, it returns the inverse of the covariance matrix of the firstK
scores, needed to calculate the Hotelling's T2 statistic for the Phase II observations. -
mean_scores_tuning_rob_mean
if a tuning data set is provided, it returns the robust location estimate of the scores, needed to calculate the Hotelling's T2 and SPE statistics for the Phase II observations.
References
Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control Charts. Technometrics, doi:10.1080/00401706.2024.2327346.
Examples
## Not run:
library(funcharts)
mfdobj <- get_mfd_list(air, n_basis = 5)
nobs <- dim(mfdobj$coefs)[2]
set.seed(0)
ids <- sample(1:nobs)
mfdobj1 <- mfdobj[ids[1:100]]
mfdobj_tuning <- mfdobj[ids[101:300]]
mfdobj2 <- mfdobj[ids[-(1:300)]]
mod_phase1 <- RoMFCC_PhaseI(mfdobj = mfdobj1,
mfdobj_tuning = mfdobj_tuning)
phase2 <- RoMFCC_PhaseII(mfdobj_new = mfdobj2,
mod_phase1 = mod_phase1)
plot_control_charts(phase2)
## End(Not run)