AMFEWMA_PhaseII {funcharts} | R Documentation |
Adaptive Multivariate Functional EWMA control chart - Phase II
Description
This function performs Phase II of the Adaptive Multivariate Functional EWMA (AMFEWMA) control chart proposed by Capezza et al. (2024)
Usage
AMFEWMA_PhaseII(mfdobj_2, mod_1, n_seq_2 = 1, l_seq_2 = 2000)
Arguments
mfdobj_2 |
An object of class |
mod_1 |
The output of the Phase I achieved through the
|
n_seq_2 |
If it is 1, the Phase II monitoring statistic is calculated on
the data sequence.
If it is an integer number larger than 1, a number |
l_seq_2 |
If |
Value
A list with the following elements.
-
ARL_2
: the average run length estimated over the bootstrap sequences. Ifn_seq_2
is 1, it is simply the run length observed over the Phase II sequence, i.e., the number of observations up to the first alarm, -
RL
: the run length observed over the Phase II sequence, i.e., the number of observations up to the first alarm, -
V2
: a list with lengthn_seq_2
, containing the AMFEWMA monitoring statistic in Equation (8) of Capezza et al. (2024), calculated in each bootstrap sequence, until the first alarm. -
cc
: a data frame with the information needed to plot the AMFEWMA control chart in Phase II, with the following columns.id
contains the id of each multivariate functional observation,amfewma_monitoring_statistic
contains the AMFEWMA monitoring statistic values calculated on the Phase II sequence,amfewma_monitoring_statistic_lim
is the upper control limit.
References
Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2024) An Adaptive Multivariate Functional EWMA Control Chart. Accepted for publication in Journal of Quality Technology.
Examples
## Not run: set.seed(0)
library(funcharts)
dat_I <- simulate_mfd(nobs = 1000,
correlation_type_x = c("Bessel", "Bessel", "Bessel"),
sd_x = c(0.3, 0.3, 0.3))
dat_tun <- simulate_mfd(nobs = 1000,
correlation_type_x = c("Bessel", "Bessel", "Bessel"),
sd_x = c(0.3, 0.3, 0.3))
dat_II <- simulate_mfd(nobs = 200,
correlation_type_x = c("Bessel", "Bessel", "Bessel"),
shift_type_x = c("C", "C", "C"),
d_x = c(2, 2, 2),
sd_x = c(0.3, 0.3, 0.3))
mfdobj_I <- get_mfd_list(dat_I$X_list)
mfdobj_tun <- get_mfd_list(dat_tun$X_list)
mfdobj_II <- get_mfd_list(dat_II$X_list)
p <- plot_mfd(mfdobj_I[1:100])
lines_mfd(p, mfdobj_II, col = "red")
mod <- AMFEWMA_PhaseI(mfdobj = mfdobj_I, mfdobj_tuning = mfdobj_tun)
print(mod$lambda)
print(mod$k)
cc <- AMFEWMA_PhaseII(mfdobj_2 = rbind_mfd(mfdobj_I[1:100], mfdobj_II),
mod_1 = mod)
plot_control_charts(cc$cc, nobsI = 100)
## End(Not run)