stat_hkr {funStatTest} | R Documentation |
Horváth-Kokoszka-Reeder statistics
Description
The Horváth-Kokoszka-Reeder statistics defined in Chakraborty & Chaudhuri (2015) (and noted HKR1 and HKR2 in Smida et al 2022) are computed to compare two sets of functional trajectories.
Usage
stat_hkr(MatX, MatY)
Arguments
MatX |
numeric matrix of dimension |
MatY |
numeric matrix of dimension |
Value
A list with the following elements
-
T1
: numeric value corresponding to the HKR1 statistic value -
T2
: numeric value corresponding to the HKR2 statistic value -
eigenval
: numeric vector of eigen values from the empirical pooled covariance matrix ofMatX
andMatY
(see Smida et al, 2022, for more details)
Author(s)
Zaineb Smida, Ghislain DURIF, Lionel Cucala
References
Horváth, L., Kokoszka, P., & Reeder, R. (2013). Estimation of the mean of functional time series and a two-sample problem. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75(1), 103–122. doi:10.1111/j.1467-9868.2012.01032.x
Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, doi:10.1080/10485252.2022.2064997, hal-03658578
See Also
Examples
simu_data <- simul_data(
n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
delta_shape = "constant", distrib = "normal"
)
MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_hkr(MatX, MatY)