irregFunData-class {funData} | R Documentation |
A class for irregularly sampled functional data
Description
The irregFunData
class represents functional data that is sampled
irregularly on one-dimensional domains. The two slots represent the
observation points (x-values) and the observed function values (y-values).
Usage
irregFunData(argvals, X)
## S4 method for signature 'list,list'
irregFunData(argvals, X)
## S4 method for signature 'irregFunData'
show(object)
## S4 method for signature 'irregFunData'
names(x)
## S4 replacement method for signature 'irregFunData'
names(x) <- value
## S4 method for signature 'irregFunData'
str(object, ...)
## S4 method for signature 'irregFunData'
summary(object, ...)
Arguments
argvals |
A list of numerics, corresponding to the observation points for each realization |
X |
A list of numerics, corresponding to the observed functions |
object |
An |
x |
The |
value |
The names to be given to the |
... |
Other parameters passed to |
Details
Irregular functional data are realizations of a random process
X:
\mathcal{T} \to \mathrm{IR},
where each realization
X_i
of X
is given on an individual grid T_i \subset
\mathcal{T}
of observation points. As for the
funData
class, each object of the irregFunData
class has two slots; the argvals
slot represents the observation
points and the X
slot represents the observed data. In contrast to the
regularly sampled data, both slots are defined as lists of vectors, where
each entry corresponds to one observed function:
-
argvals[[i]]
contains the vector of observation pointsT_i
for the i-th function, -
X[[i]]
contains the corresponding observed dataX_i(t_{ij}), t_{ij} \in T_i
.
Generic functions for the irregFunData
class include a print method,
plotting and basic
arithmetics. Further methods for irregFunData
:
-
dimSupp
,nObs
: Informations about the support dimensions and the number of observations, -
getArgvals
,extractObs
: Getting/setting slot values (instead of accessing them directly viairregObject@argvals, irregObject@X
) and extracting single observations or data on a subset of the domain, -
integrate
,norm
: Integrate all observations over their domain or calculating theL^2
norm.
An irregFunData
object can be coerced to a funData
object using
as.funData(irregObject)
. The regular functional data object is defined
on the union of all observation grids of the irregular object. The value of
the new object is marked as missing (NA
) for observation points that
are in the union, but not in the original observation grid.
Methods (by generic)
-
irregFunData(argvals = list, X = list)
: Constructor for irregular functional data objects. -
show(irregFunData)
: Print basic information about theirregFunData
object in the console. The default console output forirregFunData
objects. -
names(irregFunData)
: Get the names of theirregFunData
object. -
names(irregFunData) <- value
: Set the names of theirregFunData
object. -
str(irregFunData)
: Astr
method forirregFunData
objects, giving a compact overview of the structure. -
summary(irregFunData)
: Asummary
method forirregFunData
objects.
Functions
-
irregFunData()
: Constructor for irregular functional data objects
Slots
argvals
A list of numerics, representing the observation grid
T_i
for each realizationX_i
ofX
.X
A list of numerics, representing the values of each observation
X_i
ofX
on the corresponding observation pointsT_i
.
Warning
Currently, the class is implemented only for functional
data on one-dimensional domains \mathcal{T} \subset \mathrm{IR}
.
See Also
Examples
# Construct an irregular functional data object
i1 <- irregFunData(argvals = list(1:5, 2:4), X = list(2:6, 3:5))
# Display in the console
i1
# Summarize
summary(i1)
# A more realistic object
argvals <- seq(0,2*pi, 0.01)
ind <- replicate(11, sort(sample(1:length(argvals), sample(5:10,1)))) # sample observation points
argvalsIrreg <- lapply(ind, function(i){argvals[i]})
i2 <- irregFunData(argvals = argvalsIrreg, X = mapply(function(x, a){a * sin(x)},
x = argvalsIrreg, a = seq(0.75, 1.25, by = 0.05)))
# Display/summary gives basic information
i2
summary(i2)
# Use the plot function to get an impression of the data
plot(i2)