| irregFunData-class {funData} | R Documentation |
A class for irregularly sampled functional data
Description
The irregFunData class represents functional data that is sampled
irregularly on one-dimensional domains. The two slots represent the
observation points (x-values) and the observed function values (y-values).
Usage
irregFunData(argvals, X)
## S4 method for signature 'list,list'
irregFunData(argvals, X)
## S4 method for signature 'irregFunData'
show(object)
## S4 method for signature 'irregFunData'
names(x)
## S4 replacement method for signature 'irregFunData'
names(x) <- value
## S4 method for signature 'irregFunData'
str(object, ...)
## S4 method for signature 'irregFunData'
summary(object, ...)
Arguments
argvals |
A list of numerics, corresponding to the observation points for each realization |
X |
A list of numerics, corresponding to the observed functions |
object |
An |
x |
The |
value |
The names to be given to the |
... |
Other parameters passed to |
Details
Irregular functional data are realizations of a random process
X:
\mathcal{T} \to \mathrm{IR},
where each realization
X_i of X is given on an individual grid T_i \subset
\mathcal{T} of observation points. As for the
funData class, each object of the irregFunData
class has two slots; the argvals slot represents the observation
points and the X slot represents the observed data. In contrast to the
regularly sampled data, both slots are defined as lists of vectors, where
each entry corresponds to one observed function:
-
argvals[[i]]contains the vector of observation pointsT_ifor the i-th function, -
X[[i]]contains the corresponding observed dataX_i(t_{ij}), t_{ij} \in T_i.
Generic functions for the irregFunData class include a print method,
plotting and basic
arithmetics. Further methods for irregFunData:
-
dimSupp,nObs: Informations about the support dimensions and the number of observations, -
getArgvals,extractObs: Getting/setting slot values (instead of accessing them directly viairregObject@argvals, irregObject@X) and extracting single observations or data on a subset of the domain, -
integrate,norm: Integrate all observations over their domain or calculating theL^2norm.
An irregFunData object can be coerced to a funData object using
as.funData(irregObject). The regular functional data object is defined
on the union of all observation grids of the irregular object. The value of
the new object is marked as missing (NA) for observation points that
are in the union, but not in the original observation grid.
Methods (by generic)
-
irregFunData(argvals = list, X = list): Constructor for irregular functional data objects. -
show(irregFunData): Print basic information about theirregFunDataobject in the console. The default console output forirregFunDataobjects. -
names(irregFunData): Get the names of theirregFunDataobject. -
names(irregFunData) <- value: Set the names of theirregFunDataobject. -
str(irregFunData): Astrmethod forirregFunDataobjects, giving a compact overview of the structure. -
summary(irregFunData): Asummarymethod forirregFunDataobjects.
Functions
-
irregFunData(): Constructor for irregular functional data objects
Slots
argvalsA list of numerics, representing the observation grid
T_ifor each realizationX_iofX.XA list of numerics, representing the values of each observation
X_iofXon the corresponding observation pointsT_i.
Warning
Currently, the class is implemented only for functional
data on one-dimensional domains \mathcal{T} \subset \mathrm{IR}.
See Also
Examples
# Construct an irregular functional data object
i1 <- irregFunData(argvals = list(1:5, 2:4), X = list(2:6, 3:5))
# Display in the console
i1
# Summarize
summary(i1)
# A more realistic object
argvals <- seq(0,2*pi, 0.01)
ind <- replicate(11, sort(sample(1:length(argvals), sample(5:10,1)))) # sample observation points
argvalsIrreg <- lapply(ind, function(i){argvals[i]})
i2 <- irregFunData(argvals = argvalsIrreg, X = mapply(function(x, a){a * sin(x)},
x = argvalsIrreg, a = seq(0.75, 1.25, by = 0.05)))
# Display/summary gives basic information
i2
summary(i2)
# Use the plot function to get an impression of the data
plot(i2)