eVal {funData} | R Documentation |
Generate a sequence of simulated eigenvalues
Description
This function generates M
decreasing eigenvalues.
Usage
eVal(M, type)
Arguments
M |
An integer, the number of eigenvalues to be generated. |
type |
A character string specifying the type of eigenvalues that should be calculated. See Details. |
Details
The function implements three types of eigenvalues:
-
"linear":
The eigenvalues start at1
and decrease linearly towards0
:\nu_m = \frac{M+1-m}{m}.
-
"exponential":
The eigenvalues start at1
and decrease exponentially towards0
:\nu_m = \exp\left(-\frac{m-1}{2}\right).
-
"wiener":
The eigenvalues correspond to the eigenvalues of the Wiener process:\nu_m = \frac{1}{(\pi/2 \cdot (2m-1))^2}.
Value
A vector containing the M
decreasing eigenvalues.
Examples
oldpar <- par(no.readonly = TRUE)
# simulate M = 10 eigenvalues
M <- 10
eLin <- eVal(M = M, type = "linear")
eExp <- eVal(M = M, type = "exponential")
eWien <- eVal(M = M, type = "wiener")
par(mfrow = c(1,1))
plot(1:M, eLin, pch = 20, xlab = "m", ylab = expression(nu[m]), ylim = c(0,1))
points(1:M, eExp, pch = 20, col = 3)
points(1:M, eWien, pch = 20, col = 4)
legend("topright", legend = c("linear", "exponential", "wiener"), pch = 20, col = c(1,3,4))
par(oldpar)
[Package funData version 1.3-9 Index]