addError {funData} | R Documentation |
Add Gaussian white noise to functional data objects
Description
This function generates an artificial noisy version of a functional data
object of class funData
(univariate) or
multiFunData
(multivariate) by adding iid. realizations
of Gaussian random variables to the observations. The standard deviation
can be supplied by the user.
Usage
addError(funDataObject, sd)
Arguments
funDataObject |
A functional data object of class
|
sd |
The standard deviation |
Value
An object of the same class as funDataObject
, which is a noisy
version of the original data.
See Also
funData
, multiFunData
,
simFunData
, simMultiFunData
.
Examples
oldPar <- par(no.readonly = TRUE)
set.seed(1)
# Univariate functional data
plain <- simFunData(argvals = seq(0,1,0.01), M = 10, eFunType = "Fourier",
eValType = "linear", N = 1)$simData
noisy <- addError(plain , sd = 0.5)
veryNoisy <- addError(plain, sd = 2)
plot(plain, main = "Add error", ylim = range(veryNoisy@X))
plot(noisy, type = "p", pch = 20, add = TRUE)
plot(veryNoisy, type = "p", pch = 4, add = TRUE)
legend("topright", c("Plain", "Noisy", "Very Noisy"), lty = c(1, NA, NA), pch = c(NA, 20 ,4))
# Multivariate functional data
plain <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-.5,.5,0.02)), M = 10,
eFunType = "Fourier", eValType = "linear", N = 1)$simData
noisy <- addError(plain , sd = 0.5)
veryNoisy <- addError(plain, sd = 2)
par(mfrow = c(1,2))
plot(plain[[1]], main = "Add error (multivariate)", ylim = range(veryNoisy[[1]]@X))
plot(noisy[[1]], type = "p", pch = 20, add = TRUE)
plot(veryNoisy[[1]], type = "p", pch = 4, add = TRUE)
plot(plain[[2]], main = "Add error (multivariate)", ylim = range(veryNoisy[[2]]@X))
plot(noisy[[2]], type = "p", pch = 20, add = TRUE)
plot(veryNoisy[[2]], type = "p", pch = 4, add = TRUE)
legend("topright", c("Plain", "Noisy", "Very Noisy"), lty = c(1, NA, NA), pch = c(NA, 20 ,4))
par(oldPar)
[Package funData version 1.3-9 Index]