median.fts {ftsa} | R Documentation |
Median functions for functional time series
Description
Computes median of functional time series at each variable.
Usage
## S3 method for class 'fts'
median(x, na.rm, method = c("hossjercroux", "coordinate", "FM", "mode",
"RP", "RPD", "radius"), alpha, beta, weight, ...)
Arguments
x |
An object of class |
na.rm |
Remove any missing value. |
method |
Method for computing median. |
alpha |
Tuning parameter when |
beta |
Trimming percentage, by default it is 0.25, when |
weight |
Hard thresholding or soft thresholding. |
... |
Other arguments. |
Details
If method = "coordinate"
, it computes a coordinate-wise median.
If method = "hossjercroux"
, it computes the L1-median using the Hossjer-Croux algorithm.
If method = "FM"
, it computes the median of trimmed functional data ordered by the functional depth of Fraiman and Muniz (2001).
If method = "mode"
, it computes the median of trimmed functional data ordered by h
-modal functional depth.
If method = "RP"
, it computes the median of trimmed functional data ordered by random projection depth.
If method = "RPD"
, it computes the median of trimmed functional data ordered by random projection derivative depth.
If method = "radius"
, it computes the mean of trimmed functional data ordered by the notion of alpha-radius.
Value
A list containing x
= variables and y
= median rates.
Author(s)
Rob J Hyndman, Han Lin Shang
References
O. Hossjer and C. Croux (1995) "Generalized univariate signed rank statistics for testing and estimating a multivariate location parameter", Journal of Nonparametric Statistics, 4(3), 293-308.
A. Cuevas and M. Febrero and R. Fraiman (2006) "On the use of bootstrap for estimating functions with functional data", Computational Statistics and Data Analysis, 51(2), 1063-1074.
A. Cuevas and M. Febrero and R. Fraiman (2007), "Robust estimation and classification for functional data via projection-based depth notions", Computational Statistics, 22(3), 481-496.
M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2007) "A functional analysis of NOx levels: location and scale estimation and outlier detection", Computational Statistics, 22(3), 411-427.
M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2008) "Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels", Environmetrics, 19(4), 331-345.
M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2010) "Measures of influence for the functional linear model with scalar response", Journal of Multivariate Analysis, 101(2), 327-339.
J. A. Cuesta-Albertos and A. Nieto-Reyes (2010) "Functional classification and the random Tukey depth. Practical issues", Combining Soft Computing and Statistical Methods in Data Analysis, Advances in Intelligent and Soft Computing, 77, 123-130.
D. Gervini (2012) "Outlier detection and trimmed estimation in general functional spaces", Statistica Sinica, 22(4), 1639-1660.
See Also
mean.fts
, var.fts
, sd.fts
, quantile.fts
Examples
# Calculate the median function by the different depth measures.
median(x = ElNino_ERSST_region_1and2, method = "hossjercroux")
median(x = ElNino_ERSST_region_1and2, method = "coordinate")
median(x = ElNino_ERSST_region_1and2, method = "FM")
median(x = ElNino_ERSST_region_1and2, method = "mode")
median(x = ElNino_ERSST_region_1and2, method = "RP")
median(x = ElNino_ERSST_region_1and2, method = "RPD")
median(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, beta = 0.25, weight = "hard")
median(x = ElNino_ERSST_region_1and2, method = "radius",
alpha = 0.5, beta = 0.25, weight = "soft")