GAEVforecast {ftsa} | R Documentation |
Fit a generalized additive extreme value model to the functional data with given basis numbers
Description
One-step-ahead forecast for any given quantile(s) of functional time sereies of extreme values using a generalized additive extreme value (GAEV) model.
Usage
GAEVforecast(data, q, d.loc.max = 10, d.logscale.max = 10)
Arguments
data |
a n by p data matrix, where n denotes the number of functional objects and p denotes the number of realizations on each functional object |
q |
a required scalar or vector of GEV quantiles that are of forecasting interest |
d.loc.max |
the maximum number of basis functions considered for the location parameter |
d.logscale.max |
the maximum number of basis functions considered for the (log-)scale parameter |
Details
For the functional time seres \{X_t(u),t=1,...,T,u\in \mathcal{I}\}
, the GAEV model is given as
X_{t}(u) ~ GEV[\mu_{t}(u),\sigma_t(u),\xi_t],
where
\mu_t(u) = \beta^{(\mu)}_{t,0} + \sum_{i=1}^{d_1}\beta^{(\mu)}_{t,i}b^{(\mu)}_{i}(u),
\ln(\sigma_t(u)) = \beta^{(\sigma)}_{t,0} + \sum_{i=1}^{d_2}\beta^{(\sigma)}_{t,i}b^{(\sigma)}_{i}(u), \xi_t \in [0,\infty),
where d_{j},j=1,2
are positive integers of basis numbers, \{b^{(\mu)}_{i}(u),i=1,\dots,d_{1}\}
and \{b^{(\sigma)}_{i}(u),i=1,\dots,d_{2}\}
are the cubic regression spline basis functions.
The optimal number of basis functions (d_1,d_2)
are chosen by minimizing the Kullback-Leibler divergence on the test set using a leave-one-out cross-validation technique.
The one-step-ahead forecast of the joint coefficients (\widehat{\beta^{(\mu)}}_{T+1,i},\widehat{\beta^{(\sigma)}}_{T+1,j},\widehat{\xi}_{T+1},i=0,...,d_1,j=0,...,d_2)
are produced using a vector autoregressive model, whose order is selected via the corrected Akaike information criterion. Then the one-step-ahead forecast of the GEV parameter (\widehat{\mu}_{T+1}(u),\widehat{\sigma}_{T+1}(u),\widehat{\xi}_{T+1})
can be computed accordingly.
The one-step-ahead forecast for the \tau
-th quantile of the extreme values \widehat{X}_{T+1}(u)
is computed by
Q_{\tau}(u|\widehat{\mu}_{T+1},\widehat{\sigma}_{T+1},\widehat{\xi}_{T+1})
=
\widehat{\mu}_{T+1}(u) + \frac{\widehat{\sigma}_{T+1}(u) \big[(-\ln(\tau))^{-\widehat{\xi}_{T+1}}-1\big]}{\widehat{\xi}_{T+1}}, \xi > 0, \tau\in [0,1);\ \xi < 0, \tau\in (0,1], \\
\widehat{\mu}_{T+1}(u) - \widehat{\sigma}_{T+1}(u) \cdot \ln[-\ln\big(\tau)], \xi=0, \tau \in (0,1).
Value
kdf.location |
the optimal number of basis functions considered for the location parameter |
kdf.logscale |
the optimal number of basis functions considered for the (log-)scale parameter |
basis.location |
the basis functions for the location parameter |
basis.logscale |
the basis functions for the (log-)scale parameter |
para.location.pred |
the predicted location function |
para.scale.pred |
the predicted scale function |
para.shape.pred |
the predicted shape parameter |
density.pred |
the prediced density function(s) for the given quantile(s) |
Author(s)
Ruofan Xu and Han Lin Shang
References
Shang, H. L. and Xu, R. (2021) ‘Functional time series forecasting of extreme values’, Communications in Statistics Case Studies Data Analysis and Applications, in press.
Examples
## Not run:
library(evd)
data = matrix(rgev(1000),ncol=50)
GAEVforecast(data = data, q = c(0.02,0.7), d.loc.max = 5, d.logscale.max = 5)
## End(Not run)