CoDa_BayesNW {ftsa} | R Documentation |
Compositional data analytic approach and nonparametric function-on-function regression for forecasting density
Description
Log-ratio transformation from constrained space to unconstrained space, where a standard nonparametric function-on-function regression can be applied.
Usage
CoDa_BayesNW(data, normalization, m = 5001,
band_choice = c("Silverman", "DPI"),
kernel = c("gaussian", "epanechnikov"))
Arguments
data |
Densities or raw data matrix of dimension N by p, where N denotes sample size and p denotes dimensionality |
normalization |
If a standardization should be performed? |
m |
Grid points within the data range |
band_choice |
Selection of optimal bandwidth |
kernel |
Type of kernel function |
Details
1) Compute the geometric mean function 2) Apply the centered log-ratio transformation 3) Apply a nonparametric function-on-function regression to the transformed data 4) Transform forecasts back to the compositional data 5) Add back the geometric means, to obtain the forecasts of the density function
Value
Out-of-sample density forecasts
Author(s)
Han Lin Shang
References
Egozcue, J. J., Diaz-Barrero, J. L. and Pawlowsky-Glahn, V. (2006) ‘Hilbert space of probability density functions based on Aitchison geometry’, Acta Mathematica Sinica, 22, 1175-1182.
Ferraty, F. and Shang, H. L. (2021) ‘Nonparametric density-on-density regression’, working paper.
See Also
Examples
## Not run:
CoDa_BayesNW(data = DJI_return, normalization = "TRUE",
band_choice = "DPI", kernel = "epanechnikov")
## End(Not run)