multiRegression {fssemR} | R Documentation |
multiRegression
Description
Ridge regression on multiple conditions, initialization of FSSEM algorithm
Usage
multiRegression(Xs, Ys, Sk, gamma, n, p, k, trans = FALSE)
Arguments
Xs |
eQTL matrices. eQTL matrix can be matrix/list of multiple conditions |
Ys |
Gene expression matrices |
Sk |
eQTL index of genes |
gamma |
Hyperparameter for ridge regression |
n |
number of observations |
p |
number of genes |
k |
number of eQTLs |
trans |
if rows for sample, trans = TRUE, otherwise, trans = FALSE. Default FALSE |
Value
fit List of SEM model
- Bs
coefficient matrices of gene regulatory networks
- fs
eQTL's coefficients w.r.t each gene
- Fs
coefficient matrices of eQTL-gene effect
- mu
Bias vector
- sigma2
estimate of covariance in SEM
Examples
seed = 1234
N = 100 # sample size
Ng = 5 # gene number
Nk = 5 * 3 # eQTL number
Ns = 1 # sparse ratio
sigma2 = 0.01 # sigma2
set.seed(seed)
data = randomFSSEMdata(n = N, p = Ng, k = Nk, sparse = Ns, df = 0.3, sigma2 = sigma2,
u = 5, type = "DG", nhub = 1, dag = TRUE)
## If we assume that different condition has different genetics perturbations (eQTLs)
## data$Data$X = list(data$Data$X, data$Data$X)
gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5,
N, Ng, Nk)
fit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, N, Ng, Nk,
trans = FALSE)
[Package fssemR version 0.1.8 Index]