semimetric.projec {fsemipar} | R Documentation |
Projection semi-metric computation
Description
Computes the projection semi-metric between each curve in data1
and each curve in data2
, given a functional index \theta
.
Usage
semimetric.projec(data1, data2, theta, order.Bspline = 3, nknot.theta = 3,
range.grid = NULL, nknot = NULL)
Arguments
data1 |
Matrix containing functional data collected by row. |
data2 |
Matrix containing functional data collected by row. |
theta |
Vector containing the coefficients of |
order.Bspline |
Order of the B-spline basis functions for the B-spline representation of |
nknot.theta |
Number of regularly spaced interior knots of the B-spline basis. The default is 3. |
range.grid |
Vector of length 2 containing the range of the discretisation of the functional data. If |
nknot |
Number of regularly spaced interior knots for the B-spline representation of the functional data. The default value is |
Details
For x_1,x_2 \in \mathcal{H},
, where \mathcal{H}
is a separable Hilbert space, the projection semi-metric in the direction \theta\in \mathcal{H}
is defined as
d_{\theta}(x_1,x_2)=|\langle\theta,x_1-x_2\rangle|.
The function semimetric.projec
computes this projection semi-metric using the B-spline representation of the curves and \theta
. The dimension of the B-spline basis for \theta
is determined by order.Bspline
+nknot.theta
.
Value
A matrix containing the projection semi-metrics for each pair of curves.
Author(s)
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
References
Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in functional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/10485252.2019.1567726.
See Also
See also projec
.
Examples
data("Tecator")
names(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra
#length(theta)=6=order.Bspline+nknot.theta
semimetric.projec(data1=X[1:5,], data2=X[5:10,],theta=c(1,0,0,1,1,-1),
nknot.theta=3,nknot=20,range.grid=c(850,1050))