| print.summary.mfpl {fsemipar} | R Documentation |
Summarise information from MFPLM estimation
Description
summary and print functions for PVS.kernel.fit and PVS.kNN.fit.
Usage
## S3 method for class 'PVS.kernel'
print(x, ...)
## S3 method for class 'PVS.kNN'
print(x, ...)
## S3 method for class 'PVS.kernel'
summary(object, ...)
## S3 method for class 'PVS.kNN'
summary(object, ...)
Arguments
x |
Output of the |
... |
Further arguments. |
object |
Output of the |
Value
The matched call.
The optimal value of the tunning parameter (
h.optork.opt).The optimal initial number of covariates to build the reduced model (
w.opt).The estimated vector of linear coefficients (
beta.est).The number of non-zero components in
beta.est.The indexes of the non-zero components in
beta.est.The optimal value of the penalisation parameter (
lambda.opt).The optimal value of the criterion function, i.e. the value obtained with
w.opt,lambda.opt,vn.optandh.opt/k.optMinimum value of the penalised least-squares function. That is, the value obtained using
beta.estandlambda.opt.The penalty function used.
The criterion used to select the number of covariates employed to construct the reduced model, the tuning parameter, the penalisation parameter and
vn.
Author(s)
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
See Also
PVS.kernel.fit and PVS.kNN.fit.