| print.summary.lm {fsemipar} | R Documentation |
Summarise information from linear models estimation
Description
summary and print functions for lm.pels.fit and PVS.fit.
Usage
## S3 method for class 'lm.pels'
print(x, ...)
## S3 method for class 'PVS'
print(x, ...)
## S3 method for class 'lm.pels'
summary(object, ...)
## S3 method for class 'PVS'
summary(object, ...)
Arguments
x |
Output of the |
... |
Further arguments. |
object |
Output of the |
Value
The matched call.
The estimated intercept of the model.
The estimated vector of linear coefficients (
beta.est).The number of non-zero components in
beta.est.The indexes of the non-zero components in
beta.est.The optimal value of the penalisation parameter (
lambda.opt).The optimal value of the criterion function, i.e. the value obtained with
lambda.optandvn.opt(andw.optin the case of the PVS).Minimum value of the penalised least-squares function. That is, the value obtained using
beta.estandlambda.opt.The penalty function used.
The criterion used to select the penalisation parameter and
vn.The optimal value of
vnin the case of thelm.pelsobject.
In the case of the PVS objects, these functions also return
the optimal number of covariates required to construct the reduced model in the first step of the algorithm (w.opt). This value is selected using the same criterion employed for selecting the penalisation parameter.
Author(s)
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
See Also
lm.pels.fit and PVS.fit.