predict.lm {fsemipar} | R Documentation |
Prediction for linear models
Description
predict
method for:
Linear model (LM) fitted using
lm.pels.fit
.Linear model with covariates derived from the discretization of a curve fitted using
PVS.fit
.
Usage
## S3 method for class 'lm.pels'
predict(object, newdata = NULL, y.test = NULL, ...)
## S3 method for class 'PVS'
predict(object, newdata = NULL, y.test = NULL, ...)
Arguments
object |
Output of the |
newdata |
Matrix containing the new observations of the scalar covariates (LM), or the scalar covariates resulting from the discretisation of a curve. Observations are collected by row. |
y.test |
(optional) A vector containing the new observations of the response. |
... |
Further arguments passed to or from other methods. |
Value
The function returns the predicted values of the response (y
) for newdata
. If !is.null(y.test)
, it also provides the mean squared error of prediction (MSEP
) computed as mean((y-y.test)^2)
.
If is.null(newdata)
, then the function returns the fitted values.
Author(s)
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
See Also
lm.pels.fit
and PVS.fit
.
Examples
data("Tecator")
y<-Tecator$fat
z1<-Tecator$protein
z2<-Tecator$moisture
#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215
#LM fit.
fit<-lm.pels.fit(z=z.com[train,], y=y[train],lambda.min.l=0.01,
factor.pn=2, max.iter=5000, criterion="BIC")
#Predictions
predict(fit,newdata=z.com[test,],y.test=y[test])
data(Sugar)
y<-Sugar$ash
z<-Sugar$wave.240
#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]
#Dataset to model
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]
train<-1:216
test<-217:266
#Fit
fit.pvs<-PVS.fit(z=z.sug[train,], y=y.sug[train],train.1=1:108,train.2=109:216,
lambda.min.h=0.2,criterion="BIC", max.iter=5000)
#Predictions
predict(fit.pvs,newdata=z.sug[test,],y.test=y.sug[test])