CreateCovRegPlot {frechet} | R Documentation |
Plots for Fréchet regression for covariance matrices.
Description
Plots for Fréchet regression for covariance matrices.
Usage
CreateCovRegPlot(x, optns = list())
Arguments
x |
A |
optns |
A list of control options specified by |
Details
Available control options are
- ind.xout
A vector holding the indices of elements in
x$Mout
at which the plots will be made. Default is-
1:length(x$Mout)
whenx$Mout
is of length no more than 3; -
c(1,round(length(x$Mout)/2),length(x$Mout))
whenx$Mout
is of length greater than 3.
-
- nrow
An integer — default: 1; subsequent figures will be drawn in an
optns$nrow
-by-
ceiling(length(ind.xout)/optns$nrow)
array.- plot.type
Character with two choices, "continuous" and "categorical". The former plots the correlations in a continuous scale of colors by magnitude while the latter categorizes the positive and negative entries into two different colors. Default is "continuous"
- plot.clust
Character, the ordering method of the correlation matrix.
"original"
for original order (default);"AOE"
for the angular order of the eigenvectors;"FPC"
for the first principal component order;"hclust"
for the hierarchical clustering order, drawing 4 rectangles on the graph according to the hierarchical cluster;"alphabet"
for alphabetical order.- plot.method
Character, the visualization method of correlation matrix to be used. Currently, it supports seven methods, named "circle" (default), "square", "ellipse", "number", "pie", "shade" and "color".
- CorrOut
Logical, indicating if output is shown as correlation or covariance matrix. Default is
FALSE
and corresponds to a covariance matrix.- plot.display
Character, "full" (default), "upper" or "lower", display full matrix, lower triangular or upper triangular matrix.
Value
No return value.
Examples
#Example y input
n=20 # sample size
t=seq(0,1,length.out=100) # length of data
x = matrix(runif(n),n)
theta1 = theta2 = array(0,n)
for(i in 1:n){
theta1[i] = rnorm(1,x[i],x[i]^2)
theta2[i] = rnorm(1,x[i]/2,(1-x[i])^2)
}
y = matrix(0,n,length(t))
phi1 = sqrt(3)*t
phi2 = sqrt(6/5)*(1-t/2)
y = theta1%*%t(phi1) + theta2 %*% t(phi2)
xout = matrix(c(0.25,0.5,0.75),3)
Cov_est=GloCovReg(x=x,y=y,xout=xout,optns=list(corrOut = FALSE, metric="power",alpha=3))
CreateCovRegPlot(Cov_est, optns = list(ind.xout = 2, plot.method = "shade"))
CreateCovRegPlot(Cov_est, optns = list(plot.method = "color"))