CovFMean {frechet} | R Documentation |
Fréchet mean of covariance matrices
Description
Fréchet mean computation for covariance matrices.
Usage
CovFMean(M = NULL, optns = list())
Arguments
M |
A q by q by n array (resp. a list of q by q matrices) where |
optns |
A list of options control parameters specified by |
Details
Available control options are
- metric
Metric type choice,
"frobenius"
,"power"
,"log_cholesky"
,"cholesky"
- default:"frobenius"
which corresponds to the power metric withalpha
equal to 1.- alpha
The power parameter for the power metric, which can be any non-negative number. Default is 1 which corresponds to Frobenius metric.
- weights
A vector of weights to compute the weighted barycenter. The length of
weights
is equal to the sample size n. Default is equal weights.
Value
A list containing the following fields:
Mout |
A list containing the Fréchet mean of the covariance matrices in |
optns |
A list containing the |
References
-
Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. The Annals of Statistics, 47(2), 691–719.
-
Petersen, A., Deoni, S. and Müller, H.-G. (2019). Fréchet estimation of time-varying covariance matrices from sparse data, with application to the regional co-evolution of myelination in the developing brain. The Annals of Applied Statistics, 13(1), 393–419.
-
Lin, Z. (2019). Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition. Siam. J. Matrix. Anal, A. 40, 1353–1370.
Examples
#Example M input
n=10 #sample size
m=5 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
Fmean=CovFMean(M=M,optns=list(metric="frobenius"))