| filter_missing {framecleaner} | R Documentation |
filter out missings
Description
More complex wrapper around dplyr::filter(!is.na()) to remove NA rows using tidyselect. If any specified column contains an NA
the whole row is removed. Reports the amount of rows removed containing NaN, NA, Inf, in that order.
For example if one row contains Inf in one column and in another, the removed row will be counted in the NA tally.
Usage
filter_missing(.data, ..., remove_inf = TRUE)
## S3 method for class 'data.frame'
filter_missing(.data, ..., remove_inf = TRUE, condition = c("any", "all"))
Arguments
.data |
dataframe |
... |
tidyselect. default selection is all columns |
remove_inf |
logical. default is to also remove |
condition |
defaults to "any". in which case removes rows if |
Details
S3 method, can also be used on vectors
Value
data frame
Examples
tibble::tibble(x = c(NA, 1L, 2L, NA, NaN, 5L, Inf),
y = c(1L, NA, 2L, NA, Inf, 5L, Inf)) -> tbl1
tbl1
# remove any row with a missing or Inf
tbl1 %>%
filter_missing()
# remove any row with Na or NaN in the x column
tbl1 %>%
filter_missing(x, remove_inf = FALSE)
# only remove rows where every entry is Na, NaN, or Inf
tbl1 %>%
filter_missing(condition = "all")
[Package framecleaner version 0.2.1 Index]