fdata_rkhs {fpcb} | R Documentation |
functional data in rkhs
Description
Representing functinal data using Reproducing Kernel Hilbert Spaces. Approximate each curve with a smooth function using a kernel function.
Usage
fdata_rkhs(curves, rk, gamma = 1e-05)
Arguments
curves |
a data matrix with observations (curves) in rows and the discretizations points in columns. |
rk |
kernek function rk object. |
gamma |
regularization parameter. Defaoult value = 1e-5. |
Details
With this function each function can be represented with a vector in R^d.
Value
data |
input curves. |
fdata |
smoothed curves. |
lambda |
coefficients of the (stable) and d dimensional RKHS representation. |
alpha |
coefficients of the RKHS expansion. |
gamma |
regularization parameter. |
Author(s)
N. Hernández and J. Cugliari
References
A. Muñoz, J. González, Representing functional data using support vector machines, Pattern Recognition Letters 31 (2010) 511–516. <doi:10.1016/j.patrec.2009.07.014>.
Examples
t = 1:50
curves = matrix(sin(t)+rnorm(length(t)),nrow=1)
f.data <- fdata_rkhs(curves, rk = rk(t,sigma = 0.01))
plot(t,curves, xlab='time', ylab='PM10 dataset', col='gray', lty=1, type='b')
lines(t,f.data$fdata, col='blue', lty=1)
[Package fpcb version 0.1.0 Index]