neginc {fpc} | R Documentation |
Neg-entropy normality index for cluster validation
Description
Cluster validity index based on the neg-entropy distances of within-cluster distributions to normal distribution, see Lago-Fernandez and Corbacho (2010).
Usage
neginc(x,clustering)
Arguments
x |
something that can be coerced into a numerical matrix. Euclidean dataset. |
clustering |
vector of integers with length |
Value
Index value, see Lago-Fernandez and Corbacho (2010). The lower (i.e., the more negative) the better.
Author(s)
Christian Hennig christian.hennig@unibo.it https://www.unibo.it/sitoweb/christian.hennig/en/
References
Lago-Fernandez, L. F. and Corbacho, F. (2010) Normality-based validation for crisp clustering. Pattern Recognition 43, 782-795.
Examples
options(digits=3)
iriss <- as.matrix(iris[c(1:10,51:55,101:105),-5])
irisc <- as.numeric(iris[c(1:10,51:55,101:105),5])
neginc(iriss,irisc)
[Package fpc version 2.2-12 Index]