fourierin_2d {fourierin} | R Documentation |
Bivariate Fourier integrals
Description
It computes Fourier integrals for functions of one and two variables.
Usage
fourierin_2d(
f,
lower_int,
upper_int,
lower_eval = NULL,
upper_eval = NULL,
const_adj,
freq_adj,
resolution = NULL,
eval_grid = NULL,
use_fft = TRUE
)
Arguments
f |
function or a vector of size m. If a function is provided, it must be able to be evaluated at vectors. If a vector of values is provided, such evaluations must have been obtained on a regular grid and the Fourier integral is faster is m is a power of 2. |
lower_int |
Lower integration limit(s). |
upper_int |
Upper integration limit(s). |
lower_eval |
Lower evaluation limit(s). It can be NULL if an evaluation grid is provided. |
upper_eval |
Upper evaluation limit(s). It can be NULL if an evaluation grid is provided. |
const_adj |
Factor related to adjust definition of Fourier transform. It is usually equal to 0, -1 or 1. |
freq_adj |
Constant to adjust the exponent on the definition of the Fourier transform. It is usually equal to 1, -1, 2pi or -2pi. |
resolution |
A vector of integers (faster if powers of two) determining the resolution of the evaluation grid. Not required if f is a vector. |
eval_grid |
Optional matrix with d columns with the points where the Fourier integral will be evaluated. If it is provided, the FFT will not be used. |
use_fft |
Logical value specifying whether the FFT will be used. |
Value
If w is given, only the values of the Fourier integral are returned, otherwise, a list with three elements
w1 |
Evaluation grid for first entry |
w2 |
Evaluation grid for second entry |
values |
m1 x m2 matrix of complex numbers, corresponding to the evaluations of the integral |
Examples
##--- Recovering std. normal from its characteristic function -----
library(fourierin)
##-Parameters of bivariate normal distribution
mu <- c(-1, 1)
sig <- matrix(c(3, -1, -1, 2), 2, 2)
##-Multivariate normal density
##-x is n x d
f <- function(x) {
##-Auxiliar values
d <- ncol(x)
z <- sweep(x, 2, mu, "-")
##-Get numerator and denominator of normal density
num <- exp(-0.5*rowSums(z * (z %*% solve(sig))))
denom <- sqrt((2*pi)^d*det(sig))
return(num/denom)
}
##-Characteristic function
##-s is n x d
phi <- function(s) {
complex(modulus = exp(- 0.5*rowSums(s*(s %*% sig))),
argument = s %*% mu)
}
##-Approximate cf using Fourier integrals
eval <- fourierin_2d(f, lower_int = c(-8, -6), upper_int = c(6, 8),
lower_eval = c(-4, -4), upper_eval = c(4, 4),
const_adj = 1, freq_adj = 1,
resolution = c(128, 128))
## Extract values
t1 <- eval$w1
t2 <- eval$w2
t <- as.matrix(expand.grid(t1 = t1, t2 = t2))
approx <- eval$values
true <- matrix(phi(t), 128, 128) # Compute true values
##-This is a section of the characteristic functions
i <- 65
plot(t2, Re(approx[i, ]), type = "l", col = 2,
ylab = "",
xlab = expression(t[2]),
main = expression(paste("Real part section at ",
t[1], "= 0")))
lines(t2, Re(true[i, ]), col = 3)
legend("topleft", legend = c("true", "approximation"),
col = 3:2, lwd = 1)
##-Another section, now of the imaginary part
plot(t1, Im(approx[, i]), type = "l", col = 2,
ylab = "",
xlab = expression(t[1]),
main = expression(paste("Imaginary part section at ",
t[2], "= 0")))
lines(t1, Im(true[, i]), col = 3)
legend("topleft", legend = c("true", "approximation"),
col = 3:2, lwd = 1)