Gibbs_2PNO {fourPNO} | R Documentation |
Gibbs Implementation of 2PNO
Description
Implement Gibbs 2PNO Sampler
Usage
Gibbs_2PNO(Y, mu_xi, Sigma_xi_inv, mu_theta, Sigma_theta_inv, burnin,
chain_length = 10000L)
Arguments
Y |
A N by J |
mu_xi |
A two dimensional |
Sigma_xi_inv |
A two dimensional identity |
mu_theta |
The prior mean for theta. |
Sigma_theta_inv |
The prior inverse variance for theta. |
burnin |
The number of MCMC samples to discard. |
chain_length |
The number of MCMC samples. |
Value
Samples from posterior.
Author(s)
Steven Andrew Culpepper
Examples
# simulate small 2PNO dataset to demonstrate function
J = 5
N = 100
# Population item parameters
as_t = rnorm(J,mean=2,sd=.5)
bs_t = rnorm(J,mean=0,sd=.5)
# Sampling gs and ss with truncation
gs_t = rbeta(J,1,8)
ps_g = pbeta(1-gs_t,1,8)
ss_t = qbeta(runif(J)*ps_g,1,8)
theta_t = rnorm(N)
Y_t = Y_4pno_simulate(N,J,as=as_t,bs=bs_t,gs=gs_t,ss=ss_t,theta=theta_t)
# Setting prior parameters
mu_theta = 0
Sigma_theta_inv = 1
mu_xi = c(0,0)
alpha_c = alpha_s = beta_c = beta_s = 1
Sigma_xi_inv = solve(2*matrix(c(1,0,0,1), 2, 2))
burnin = 1000
# Execute Gibbs sampler. This should take about 15.5 minutes
out_t = Gibbs_4PNO(Y_t,mu_xi,Sigma_xi_inv,mu_theta,Sigma_theta_inv,
alpha_c,beta_c,alpha_s, beta_s,burnin,
rep(1,J),rep(1,J),gwg_reps=5,chain_length=burnin*2)
# Summarizing posterior distribution
OUT = cbind(
apply(out_t$AS[, -c(1:burnin)], 1, mean),
apply(out_t$BS[, -c(1:burnin)], 1, mean),
apply(out_t$GS[, -c(1:burnin)], 1, mean),
apply(out_t$SS[, -c(1:burnin)], 1, mean),
apply(out_t$AS[, -c(1:burnin)], 1, sd),
apply(out_t$BS[, -c(1:burnin)], 1, sd),
apply(out_t$GS[, -c(1:burnin)], 1, sd),
apply(out_t$SS[, -c(1:burnin)], 1, sd)
)
OUT = cbind(1:J, OUT)
colnames(OUT) = c('Item','as','bs','gs','ss','as_sd','bs_sd',
'gs_sd','ss_sd')
print(OUT, digits = 3)
[Package fourPNO version 1.1.0 Index]