predCoef {forecastSNSTS} | R Documentation |
h
-step Prediction coefficients
Description
This function computes the localised and iterated Yule-Walker coefficients
for h-step ahead forecasting of X_{t+h}
from X_{t}, ..., X_{t-p+1}
,
where h = 1, \ldots,
H
and p = 1, \ldots,
P
.
Arguments
X |
the data |
P |
the maximum order of coefficients to be computed; has to be a positive integer |
H |
the maximum lead time; has to be a positive integer |
t |
a vector of values |
N |
a vector of values |
Details
For every t \in
t
and every N \in
N
the (iterated) Yule-Walker
estimates \hat v_{N,T}^{(p,h)}(t)
are computed. They are defined as
\hat v_{N,T}^{(p,h)}(t) := e'_1 \big( e_1 \big( \hat a_{N,T}^{(p)}(t) \big)' + H \big)^h, \quad N \geq 1,
and
\hat v_{0,T}^{(p,h)}(t) := \hat v_{t,T}^{(p,h)}(t),
with
e_1 := \left(\begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array} \right), \quad H := \left( \begin{array}{ccccc} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{array} \right)
and
\hat a_{N,T}^{(p)}(t) := \big( \hat\Gamma_{N,T}^{(p)}(t) \big)^{-1} \hat\gamma_{N,T}^{(p)}(t),
where
\hat\Gamma_{N,T}^{(p)}(t) := \big[ \hat \gamma_{i-j;N,T}(t) \big]_{i,j = 1, \ldots, p}, \quad \hat \gamma_{N,T}^{(p)}(t) := \big( \hat \gamma_{1;N,T}(t), \ldots, \hat \gamma_{p;N,T}(t) \big)'
and
\hat \gamma_{k;N,T}(t) := \frac{1}{N} \sum_{\ell=t-N+|k|+1}^{t} X_{\ell-|k|,T} X_{\ell,T}
is the usual lag-k
autocovariance estimator (without mean adjustment),
computed from the observations X_{t-N+1}, \ldots, X_{t}
.
The Durbin-Levinson Algorithm is used to successively compute the solutions to the
Yule-Walker equations (cf. Brockwell/Davis (1991), Proposition 5.2.1).
To compute the h
-step ahead coefficients we use the recursive relationship
\hat v_{i,N,T}^{(p)}(t,h) = \hat a_{i,N,T}^{(p)}(t) \hat v_{1,N,T}^{(p,h-1)}(t) + \hat v_{i+1,N,T}^{(p,h-1)}(t) I\{i \leq p-1\},
(cf. Section 3.2, Step 3, in Kley et al. (2019)).
Value
Returns a named list with elements coef
, t
, and N
,
where coef
is an array of dimension
P
\times
P
\times
H
\times
length(t)
\times
length(N)
, and
t
, and N
are the parameters provided on the call of the
function. See the example on how to access the vector
\hat v_{N,T}^{(p,h)}(t)
.
References
Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods. Springer, New York.
Examples
T <- 100
X <- rnorm(T)
P <- 5
H <- 1
m <- 20
Nmin <- 25
pcoef <- predCoef(X, P, H, (T - m - H + 1):T, c(0, seq(Nmin, T - m - H, 1)))
## Access the prediction vector for p = 2, h = 1, t = 95, N = 25
p <- 2
h <- 1
t <- 95
N <- 35
res <- pcoef$coef[p, 1:p, h, pcoef$t == t, pcoef$N == N]