acfARp {forecastSNSTS} | R Documentation |
Compute autocovariances of an AR(p) process
Description
This functions returns the autocovariances Cov(X_{t-k}, X_t)
of a
stationary time series (Y_t)
that fulfills the following equation:
Y_t = \sum_{j=1}^p a_j Y_{t-j} + \sigma \varepsilon_{t},
where \sigma > 0
, \varepsilon_t
is white noise and
a_1, \ldots, a_p
are real numbers satisfying that the roots
z_0
of the polynomial 1 - \sum_{j=1}^p a_j z^j
lie strictly outside the unit circle.
Usage
acfARp(a = NULL, sigma, k)
Arguments
a |
vector |
sigma |
standard deviation of |
k |
lag for which to compute the autocovariances. |
Value
Returns autocovariance at lag k of the AR(p) process.
Examples
## Taken from Section 6 in Dahlhaus (1997, AoS)
a1 <- function(u) {1.8 * cos(1.5 - cos(4*pi*u))}
a2 <- function(u) {-0.81}
# local autocovariance for u === 1/2: lag 1
acfARp(a = c(a1(1/2), a2(1/2)), sigma = 1, k = 1)
# local autocovariance for u === 1/2: lag -2
acfARp(a = c(a1(1/2), a2(1/2)), sigma = 1, k = -1)
# local autocovariance for u === 1/2: the variance
acfARp(a = c(a1(1/2), a2(1/2)), sigma = 1, k = 0)
[Package forecastSNSTS version 1.3-0 Index]