rwf {forecast} | R Documentation |
Naive and Random Walk Forecasts
Description
rwf()
returns forecasts and prediction intervals for a random walk
with drift model applied to y
. This is equivalent to an ARIMA(0,1,0)
model with an optional drift coefficient. naive()
is simply a wrapper
to rwf()
for simplicity. snaive()
returns forecasts and
prediction intervals from an ARIMA(0,0,0)(0,1,0)m model where m is the
seasonal period.
Usage
rwf(
y,
h = 10,
drift = FALSE,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y
)
naive(
y,
h = 10,
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y
)
snaive(
y,
h = 2 * frequency(x),
level = c(80, 95),
fan = FALSE,
lambda = NULL,
biasadj = FALSE,
...,
x = y
)
Arguments
y |
a numeric vector or time series of class |
h |
Number of periods for forecasting |
drift |
Logical flag. If TRUE, fits a random walk with drift model. |
level |
Confidence levels for prediction intervals. |
fan |
If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots. |
lambda |
Box-Cox transformation parameter. If |
biasadj |
Use adjusted back-transformed mean for Box-Cox transformations. If transformed data is used to produce forecasts and fitted values, a regular back transformation will result in median forecasts. If biasadj is TRUE, an adjustment will be made to produce mean forecasts and fitted values. |
... |
Additional arguments affecting the forecasts produced. If
|
x |
Deprecated. Included for backwards compatibility. |
Details
The random walk with drift model is
Y_t=c + Y_{t-1} + Z_t
where Z_t
is a normal iid error. Forecasts are
given by
Y_n(h)=ch+Y_n
. If there is no drift (as in
naive
), the drift parameter c=0. Forecast standard errors allow for
uncertainty in estimating the drift parameter (unlike the corresponding
forecasts obtained by fitting an ARIMA model directly).
The seasonal naive model is
Y_t= Y_{t-m} + Z_t
where Z_t
is a normal iid error.
Value
An object of class "forecast
".
The function summary
is used to obtain and print a summary of the
results, while the function plot
produces a plot of the forecasts and
prediction intervals.
The generic accessor functions fitted.values
and residuals
extract useful features of the value returned by naive
or
snaive
.
An object of class "forecast"
is a list containing at least the
following elements:
model |
A list containing information about the fitted model |
method |
The name of the forecasting method as a character string |
mean |
Point forecasts as a time series |
lower |
Lower limits for prediction intervals |
upper |
Upper limits for prediction intervals |
level |
The confidence values associated with the prediction intervals |
x |
The original time series
(either |
residuals |
Residuals from the fitted model. That is x minus fitted values. |
fitted |
Fitted values (one-step forecasts) |
Author(s)
Rob J Hyndman
See Also
Examples
gold.fcast <- rwf(gold[1:60], h=50)
plot(gold.fcast)
plot(naive(gold,h=50),include=200)
plot(snaive(wineind))