par.lrpc {fnets} | R Documentation |
Parametric estimation of long-run partial correlations of factor-adjusted VAR processes
Description
Returns a parametric estimate of long-run partial correlations of the VAR process
from the VAR parameter estimates and the inverse of innovation covariance matrix obtained via constrained l1
-minimisation.
Usage
par.lrpc(
object,
eta = NULL,
tuning.args = list(n.folds = 1, path.length = 10),
lrpc.adaptive = FALSE,
eta.adaptive = NULL,
do.correct = TRUE,
do.threshold = FALSE,
n.cores = 1
)
Arguments
object |
|
eta |
|
tuning.args |
a list specifying arguments for the cross validation procedure for selecting the tuning parameter involved in long-run partial correlation matrix estimation. It contains:
|
lrpc.adaptive |
whether to use the adaptive estimation procedure |
eta.adaptive |
|
do.correct |
whether to correct for any negative entries in the diagonals of the inverse of long-run covariance matrix |
do.threshold |
whether to perform adaptive thresholding of |
n.cores |
number of cores to use for parallel computing, see makePSOCKcluster |
Details
See Barigozzi, Cho and Owens (2024+) for further details, and Cai, Liu and Zhou (2016) for further details on the adaptive estimation procedure.
Value
a list containing
Delta |
estimated inverse of the innovation covariance matrix |
Omega |
estimated inverse of the long-run covariance matrix |
pc |
estimated innovation partial correlation matrix |
lrpc |
estimated long-run partial correlation matrix |
eta |
|
lrpc.adaptive |
input argument |
References
Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).
Cai, T. T., Liu, W., & Zhou, H. H. (2016) Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 44(2), 455-488.
Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).
Examples
out <- fnets(data.unrestricted, do.lrpc = FALSE, var.args = list(n.cores = 2))
plrpc <- par.lrpc(out, n.cores = 2)
out$lrpc <- plrpc
out$do.lrpc <- TRUE
plot(out, type = "pc", display = "network")
plot(out, type = "lrpc", display = "heatmap")